1. Aggarwal, S., Misra, M. 2018. Comparison of NDVI, NDBI as indicators of surface heat island effects for Bangalore and New Delhi: Case Study. In Remote Sensing Technologies and Applications in Urban Environments III, 10793: 1079314. 2. Coll, C., Caselles, V., Valor, E., Rubio, E. 2003. Validation of temperature emissivity separation and split window methods from TIM’s data and ground measurements. Remote Sensing of Environment, 85: 232-242. 3. Deng, Y., Wang, S., Bai, X., Tian, Y., Wu, L., Xiao, J., Qian, Q. 2018. Relationship among land surface temperature and LUCC, NDVI in typical karst area. Scientific reports, 8(1): 641. 4. García-Haro, F. J., Sommer, S., Kemper, T.2005. Variable multiple end member spectralmixture analysis (VMESMA), InternationalJournal of Remote Sensing, 26:2135-2162. 5. Guo, G., Zhou, X., Wu, Z., Xiao, R. and Chen, Y. 2016. Characterizing the impact of urban morphology heterogeneity on land surface temperature in Guangzhou, China. Journal of Environmental modelling & software,84:427-439. 6. Hereher, M.E. 2017. Effect of land use/cover change on land surface temperatures-The Nile Delta, Egypt. Journal of African Earth Sciences, 126:75-83. 7. Jamei E., Rajagopalan P., Seyedmahmoudian M. Jamei Y. 2016. Review on the Impact of UrbanGeometry and Pedestrian Level Greening on Outdoor Thermal Comfort, Renewable and Sustainable Energy Reviews, 54 (2016): 1002-1017. 8. Kayet, N., Pathak, K., Chakrabarty, A., Sahoo, S.2016. Spatial impact of land use/land cover change on surface temperature distribution in Saranda Forest, Jharkhand. Modeling Earth Systems and Environment, 2(3):127. 9. Kurc, S. A., Small, E. E.2007. Soil moisture variations and ecosystem‐scale fluxes of water and carbon in semiarid grassland and shrubland. Water Resources Research, 43(6).13pp. 10. Mackey, C. W., Lee, X., Smith, R. B.2012.Remotely sensing the cooling effects of city scale efforts to reduce urban heat island, Building and Environment,1(49):348-358. 11. McFeeters, S.L.1996. The use of the Normal Different water index (NDWI) in the Delineation of open water feature. International journal of remote sesnseing.17 (7):1425-1432 12. Malik, M. S., Shukla, J. P.,Mishra, S. 2019. Relationship of LST, NDBI and NDVI using Landsat-8 data in Kandaihimmat Watershed, Hoshangabad, India.Indian Journal of Geo-Marine Sciences.48(1):25-31. 13. Mallick, J., Kant, Y., Bharath, B. D. 2008. Estimation of land surface temperature over Delhi using Landsat–7 ETM+. Journal of the Indian geography :union:, 12 (3):131–140. 14. McCune, B., Keon, D. 2002. Equations for potential annual direct incident radiation and heat load, Journal of Vegetation Science, 13(4): 603-606. 15. Panda, S.,Jain, M.K . 2017. Effects of Green Space Spatial Distribution on Land Surface Temperature: Implications for Land Cover Change as Environmental Indices. 10(02):180-184. 16. Rodriguez-Galiano, V. F., Chica-Olmo, M., Abarca-Hernandez, F., Atkinson, P. M., Jeganathan, C. 2012. RandomForest classification of Mediterranean land covers using multi-seasonal imagery and multi-seasonal texture. Journal of Remote Sensing of Environment121: 93-107. 17. Siddique, N. P.,Ghaffar, A.2019. Spatial and Temporal relationship between NDVI and Land Surface Temperature of Faisalabad city from 2000-2015. European Online Journal of Natural and Social Sciences, 8(1): 55. 18. Villegas, J. C., Breshears, D. D., Zou, C. B., Royer, P. D.2010. Seasonally pulsed heterogeneity in microclimate: phenology and cover effects along deciduous grassland–forest continuum. Vadose Zone Journal, 9(3): 537-547. 19. Yue, Y., Wang, K., Bing, Z., Chen, Z., Jiao, Q., Bo, L., Chen, H.2009. Exploring the relationship between vegetation spectra and eco-geo-environmental conditions in Karst region, Southwest China. Environ. Monit. Assess, 160(1-4): 157–168.
|