1. Austin, M.P. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling. 157(2-3): 101-118. 2. Austin, M.P., Belbinb, J.A. Meyers, M.D., Dohertya. Luotoc, M., 2006. Evaluation of statistical models used for predicting plant species distributions: Role of artificial data and theory. Ecological Modelling, 199(2):197-216. 3. Bakkenes, M., Alkemade, J.R.M., Ihle, F., Leemans, R., Latour, J.B. 2002. Assessing the effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global change biology, 8(4): 390–407. 4. Beers, T.W., Dress, P.E., Wensel, L.C. 1966. Notes and observations: aspect transformation in site productivity research. Journal of Forestry, 64(10), pp.691-692. 5. Celikezen, F.C., Türkez, H., Firat, M., Arslan, M.E. Öner, S. 2022. In vitro Evaluation of Selective Cytotoxic Activity of Chaerophyllum macropodum Boiss. on Cultured Human SH-SY5Y Neuroblastoma Cells. Neurotoxicity Research, 40(5), pp.1360-1368. 6. Chenini, I., Khemiri, S. 2009. Evaluation of ground water quality using multiple linear regression and structural equation modeling. Int. J. Environ. Sci. Tech., 6 (3): 509-519. 7. Dashti, M., Mirdavoudi, H., Ghasemi Arian, A., Azizi, N. 2021. Effects of Topography and Soil Variables on Abundance of Onobrychis chorassanica Bunge. in Kardeh and Kurtian Rangelands, Mashhad, Iran. Journal of Rangeland Science, 11(3), pp.283-299. 8. Gauch, H.G., Whittaker, R.H., Singer, S.B. 1981. A comparative study of nonmetric ordinations. Journal of ecology, 69:135-152. 9. IPNI .2017. The International Plant Names Index. Retrieved from http://www.ipni.org. On 17 March 2017. 10. Jongman, R.H.G., Terbraak. C.J.F., Van Tongeren, F.R. 1995. Data Analysis in ommunity and lndscape ecology, Cambridge university press, 299 pp. 11. Jalilian, N., Mirdavoudi, H., Paykani, M.N., Rahimi, H. 2022. Response of Vicia variabilis to Some Ecological Factors in the Zagros Forests of Iran. Rangeland Ecology and Management, 80, pp.39-47. 12. Kent, M. 2011. Vegetation description and data analysis: a practical approach. John Wiley and sons, 414 pp. 13. Kleyer, M., Dray, S., Bello, F., Leps, J., Pakeman, R.J., Strauss, B., Thuiller, W., Lavorel, S. 2012. Assessing species and community functional responses to environmental gradients: which multivariate methods. Journal of vegetation science, 23(5): pp.805-821. 14. Li, W.Q., Xiao-Jing, L., Khan, M.A., Gul, B. 2008. Relationship between soil characteristics and halophytic vegetation in coastal region of North China. Pakistan journal of botany, 40(3): 081-90. 15. Lu, T., Ma, K.M., Zhang, W.H., Fu, B.J. 2006. Differential responses of shrubs and herbs present at the upper Minjiang river basin (Tibetan plateau) to several soil variables. Journal of arid environments, (67): 373–390. 16. Mackenzie, M.L., Donovan, C.R., McArdle, B.H. 2005. Regression spline mixed models: a forestry example. J. Agric. Biol. Environ. Stat. 10(4): 394–410. 17. Oksanen, J., Minchin, P.R. 2002. Continuum theory revisited: what shape are species responses along ecological gradients? Journal of Ecological Modelling, 157(3):119-129. 18. Palmer, M.W. 1993. Putting things in even better order: The advantages of canonical correspondence analysis. Ecology, 74: 2215- 2230. 19. Samadi Khangah, S., Ghorbani, A., Moameri, M. 2021. Relationship between ecological species groups and environmental factors in Fandoghlou rangelands of Ardabil, Iran. Ecopersia, 9(2), pp.131-138. 20. Stewart, P.S., Stephens, P.A. and Hill, R.A., Whittingham, M.J., Dawson, W. 2022. Model Selection in Occupancy Models: Inference versus Prediction. bioRxiv. 21. Ter Braak, C.J.F. 1985. Correspondence analysis of incidence and abundance data: properties in terms of a unimodal response model. Biometrics, 41(4): 859–873. 22. Traore, S., Zerbo, L., Schmidt, M., Thiombiano, L. 2012. Acacia communities and species responses to soil and climate gradients in the Sudano-Sahelian zone of west Africa. Journal of arid environments, 87:144-152. 23. Vazirinasab, H., Salehi, M., Khoshgam, M., Rafati, N. 2012. Application of the generalized additive model in determination of the retinopathy risk factors relation types for Tehran diabetic patients. Razi Journal of medical sciences, 19 97): 1-9 (In Persian). 24. Vogiatzakis, I.N., Griffiths, G.H., Mannion, A.M. 2003. Environmental factors and vegetation composition, Lefka Ori massife Crete, S. Aegean. Global ecology and biogeography, 12(2): 141-146. 25. Zolfaghari, A., Ansari, S. 2020. Physicochemical and microbiological properties of Chaerophyllum, Oliveria and Zataria essential oils and their effects on the sensory properties of a fermented dairy drink,‘doogh’. International Journal of Food Properties, 23(1), pp.1540-1555.
|