[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 13, Issue 26 (9-2025) ::
PEC 2025, 13(26): 1-12 Back to browse issues page
Study of Gypsum Ecosystems Species Adaptation in Northeastern Iran (Case study: Khorasan Razavi Province)
Khadijeh Bahalkeh1 , Mehdi Abedi * , Sara Palacio3 , Arantzazu L. Luzuriaga4 , Adrian Escudero4
1- Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran Province, Iran
Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran, Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran , mehdi.abedi@modares.ac.ir
3- Instituto Pirenaico de Ecología (IPE-CSIC), Jaca, Huesca, Spain
4- Área de Biodiversidad y Conservación. Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid,
Abstract:   (1331 Views)
Plants that grow in severe environments have special strategies for adapting to harsh conditions. Gypsum ecosystems host particular species with unique characteristics. To study the adaptations of plant in gypsum ecosystems, five critical species including Hedysarum monophyllum, Krascheninnikovia ceratoides, Prunus spinosissima, Sclerorhachis platyrachis and Thesium kotschyanum were selected in Khorasan Razavi province as the most important gypsum site in the northeast of the country, in May 2018. Five individuals were selected for each species and morphological traits were measured, including leaf area, leaf length, leaf dry weight, leaf fresh weight, specific leaf area (SLA), and leaf dry matter content (LDMC). Traits such as Al, Ca, Mg, Fe, P, Na, K, Mn, S, C, and N for each species were also measured. A Generalized Linear Mixed Model (GLMM) was used to assess significance and Tukey's Honestly Significant Difference (HSD) test was also applied for mean comparisons. Principal Component Analysis (PCA) was applied for multivariate analysis. All statistical analyses were performed using R software. Our findings demonstrated that most leaf chemical traits were significant, with the exception of Na. The amount of K, Ca, and S had the lowest values (10.83±0.5, 1.91±1.2 and 3.06±0.3) in P. spinosissima and significant differences. In contrast, the amount of C was the highest (471.2±2.7) with significant differences. Additionally, the levels of Mn, Al, Mg, and Fe were significantly higher in K. ceratoides (1.39±0.12, 2.27±0.2, 7.23±0.4, and 0.22±0.02).  The amount of Na had no significant differences among species. The amount of P and Cu was higher (1.61±0.39 and 0.02±0.003) in T. kotschyanum .In terms of morphological traits, all were significantly different except for leaf thickness.  The K. ceratoides had the highest fresh weight (0.09±0.01), dry weight (0.05±0.03) and leaf dry matter content (64.51±4.7), S. platyrachis had a higher leaf length (2.99±0.15), and H. monophyllum had a higher leaf area (2.39±0.18) and specific area (6.38±0.91) and T.kotschyanum had a highest fresh weight (0.009±0.02). Overall, gypsophytes with S and Ca accumulations and gypsovags with P, K, C, and N accumulations in leaves will be better suited to harsh gypsum conditions. These results could be applied to the restoration and conservation of these habitats and their rare species.
 
Article number: 1
Keywords: Robat sefid, Elements, Gypsophytes, Functional ecology, Conservation
Full-Text [PDF 1303 kb]   (642 Downloads)    
Type of Study: Research | Subject: Special
Received: 2024/07/22 | Accepted: 2024/09/9 | Published: 2025/09/15
References
1. Abedi, M., Omidipour, R., Bahalkeh, K., Hosseini, S. V., Gross, N. 2022. Fire disturbance effects on plant taxonomic and functional β-diversity mediated by topographic exposure. Ecology and Evolution, 12(1), 1–13.
2. Bahalkeh, K., Abedi, M., Palacio, S., Luzuriaga, A., Escudero, A. 2024. Changes in the biotic interactions of Artemisia diffusa Krasch. ex Poljakov along the altitude gradient of gypsum ecosystems (case study: Semnan Province). Iranian Journal of Range and Desert Research, 31(3), 248–265.
3. Bartušková, A., Doležal, J., Janeček, Š., Lanta, V., Klimešová, J. 2015. Changes in biomass allocation in species rich meadow after abandonment: ecological strategy or allometry? Perspectives in Plant Ecology, Evolution and Systematics, 17(5):379–387.
4. Bolukbasi, A., Kurt, L., Palacio, S. 2016. Unravelling the mechanisms for plant survival on gypsum soils: an analysis of the chemical composition of gypsum plants from Turkey. Plant Biology, 18(2), pp.271-279.
5. Canadas, E. M., Ballesteros, M., Valle, F., Lorite, J. 2014. Does gypsum influence seed germination? Turkish Journal of Botany, 38(1): 141–147.
6. Casby-Horton S, Herrero J, Rolong N.A. 2015. Chapter four—gypsum soils—their morphology, classification, function, and landscapes .In: Sparks DL, ed. Advances in agronomy. Academic Press, 231-290.
7. Cera, A., Montserrat-Martí, G., Palacio, S. 2023. Nutritional strategy underlying plant specialization to gypsum soils. AoB Plants, 15(4): p.plad041.
8. Cody, M.L. 1978. Distribution ecology of haplopappus and chrysothamnus in the mojave desert. I. niche position and niche shifts on north-facing granitic slopes. American Journal of Botany, 5(10) 1107-1116. DOI 10.1002/j.1537-2197.1978.tb06178.x.
9. Cornelissen, J. H. C., Lavorel, S., Garnier, E., Diaz, S., Buchmann, N., Gurvich, D. E., Reich, P.B., Ter Steege, H., Morgan, H.D., Van Der Heijden, M. G. A. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51(4): 335–380.
10. Escudero, A., Palacio, S., Maestre, F. T., Luzuriaga, A. L. 2015. Plant life on gypsum: a review of its multiple facets. Biological Reviews, 90(1): 1–18.
11. Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Tautenhahn, S., Werner, G. D. A., Aakala, T., Abedi, M., et al. 2020. TRY plant trait database – Enhanced coverage and open access. Global Change Biology, 26(1), 119–188.
12. Kraft, N.J., Godoy, O., Levine, J.M. 2015. Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences, 112(3): pp.797-802.
13. Eswaran, H., Gong, Z.-T. 1991. Properties, genesis, classification, and distribution of soils with gypsum. Occurrence, Characteristics, and Genesis of Carbonate, Gypsum, and Silica Accumulations in Soils, (occurrencechara): 89–119.
14. Garnier, E., Navas, M.-L. 2012. A trait-based approach to comparative functional plant ecology: concepts, methods and applications for agroecology. A review. Agronomy for Sustainable Development, 32(2): 365–399.
15. Gross, N., Maestre, F. T., Liancourt, P., Berdugo, M., Martin, R., Gozalo, B., Ochoa, V., Delgado-Baquerizo, M., Maire, V., Saiz, H. et al. 2024. Unforeseen plant phenotypic diversity in a dry and grazed world. Nature, 632(8026), 808–814.
16. Jalali, M., Abedi, M., Tabarsa, M., & Moreno, D. A. 2024. Morphological and biochemical characteristics of wild red-fleshed apples (Malus sieversii f. niedzwetzkyana) in the North and Northeast of Iran. BMC Plant Biology, 24(1), 899.
17. Liu, Y., Zheng, C., Su, X., Chen, J., Li, X., Sun, C., Nizamani, M.M. 2024. Comparative analysis and characterization of the chloroplast genome of Krascheninnikovia ceratoides (Amarathaceae): a xerophytic semi-shrub exhibiting drought resistance and high-quality traits. BMC Genomic Data, 25(1): p.10.
18. Maire, V., Gross, N., Börger, L., Proulx, R., Wirth, C., Pontes, L. da S., Soussana, J.F., Louault, F. 2012. Habitat filtering and niche differentiation jointly explain species relative abundance within grassland communities along fertility and disturbance gradients. New Phytologist, 196(2): 497–509.
19. Matinzadeh, Z., Akhani, H., Abedi, M., Palacio, S. 2019. The elemental composition of halophytes correlates with key morphological adaptations and taxonomic groups. Plant Physiology and Biochemistry, 141, pp.259-278.
20. McGill, B. J., Enquist, B. J., Weiher, E., Westoby, M. 2006. Rebuilding community ecology from functional traits. Trends Ecol. Evol, 21:178–185.
21. Meyer, S. E., García-Moya, E. 1989. Plant community patterns and soil moisture regime in gypsum grasslands of north central Mexico. Journal of Arid Environments, 16(2): 147–155.
22. Memariani, F. 2020. The Khorassan-Kopet Dagh Mountains. Plant biogeography and vegetation of high mountains of central and south-west Asia, 93-116.
23. Merlo, M.E., Garrido-Becerra, J.A., Mota, J.F., Salmerón-Sánchez, E., Martínez-Hernández, F., Mendoza-Fernández, A., Pérez-García, F.J. 2019. Threshold ionic contents for defining the nutritional strategies of gypsophile flora. Ecological Indicators, 97: pp.247-259.
24. Minden, V., Andratschke, S., Spalke, J., Timmermann, H., Kleyer, M. 2012. Plant trait–environment relationships in salt marshes: Deviations from predictions by ecological concepts. Perspectives in Plant Ecology, Evolution and Systematics, 14(3): 183–192.
25. Moore M, Mota J, Douglas N, Flores-Olvera H, Ochoterena H. 2014. The ecology, assembly, and evolution of gypsophile floras. In: Rajakaruna N, Boyd RS, Harris TB, eds. Hauppauge, NY: Nova Science Publishers, 97–128.
26. Moravcova, L., Pyšek, P., Jarošík, V., Havlíčková, V., Zákravský, P. 2010. Reproductive characteristics of neophytes in the Czech Republic: traits of invasive and non-invasive species. Preslia, 82(4): pp.365-390.
27. Mota, J. F., Garrido-Becerra, J. A., Merlo, M. E., Medina-Cazorla, J. M.,Sánchez-Gómez, P. 2017. The edaphism: gypsum, dolomite and serpentine flora and vegetation. In The Vegetation of the Iberian Peninsula (pp. 277–354). Springer.
28. Muller, C.T., Moore, M.J., Feder, Z., Tiley, H., Drenovsky, R.E. 2017. Phylogenetic patterns of foliar mineral nutrient accumulation among gypsophiles and their relatives in the Chihuahuan Desert. American Journal of Botany, 104(10): pp.1442-1450.
29. Palacio, S., Escudero, A., Montserrat-Martí, G., Maestro, M., Milla, R., Albert, M. J. 2007. Plants living on gypsum: beyond the specialist model. Annals of Botany, 99(2): 333–343.
30. Palacio, S., Aitkenhead, M., Escudero, A., Montserrat-Martí, G., Maestro, M., Robertson, A.J. 2014. Gypsophile chemistry unveiled: Fourier transform infrared (FTIR) spectroscopy provides new insight into plant adaptations to gypsum soils. PLoS One, 9(9): p.e107285.
31. Perez-Garcia, F., Akhani, H., Parsons, R., Silcock, J., Kurt, L., Ozdeniz, E., Spampinato, G., Musarella, C., Salmeron-Sanchez, E., Sola, F., Merlo, M. 2018. A first inventory of gypsum flora in the Palearctic and Australia. Mediterranean Botany 39(1).
32. Perez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., M. S. Bret-Harte., Cornwell, W.K., Craine, J. M., Gurvich, D. E. 2016. Corrigendum to: new handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 64(8): 715–716.
33. Perez-Ramos, I.M., Matías, L., Gómez Aparicio, L., Godoy, Ó. 2019. Functional traits and phenotypic plasticity modulate species coexistence across contrasting environments. bioRxiv, p.539619.
34. Robson, T., Stevens, J., Dixon, K., Reid, N. 2017. Sulfur accumulation in gypsum-forming thiophores has its roots firmly in calcium. Environmental and Experimental Botany, 137:pp.208-219.
35. Ruiz, J.M., López-Cantarero, I., Rivero, R.M., Romero, L. 2003. Sulphur phyto accumulation in plant species characteristic of gypsiferous soils. International Journal of Phytoremediation, 5(3), pp.203-210.
36. Verheye, W. H., Boyadgiev, T. G. 1997. Evaluating the land use potential of gypsiferous soils from field pedogenic characteristics. Soil Use and Management, 13(2): 97–103.
37. Violle, C., Navas, M., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E. 2007. Let the concept of trait be functional! Oikos, 116(5): 882–892.
38. Wang, D., Liu, S., Warrell, J., Won, H., Shi, X., Navarro, F.C., Clarke, D., Gu, M., Emani, P., Yang, Y.T. Xu, M. 2018. Comprehensive functional genomic resource and integrative model for the human brain. Science, 362(6420): p.eaat8464.
39. Yousefi, E., Abedi, M., Aghajanzadeh, T. A., et al. 2025. Caper bush (Capparis spinosa L.) bioactive compounds and antioxidant capacity as affected by adaptation to harsh soils. Scientific Reports, 15, 11893.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bahalkeh K, Abedi M, Palacio S, Luzuriaga A L, Escudero A. Study of Gypsum Ecosystems Species Adaptation in Northeastern Iran (Case study: Khorasan Razavi Province). PEC 2025; 13 (26) : 1
URL: http://pec.gonbad.ac.ir/article-1-987-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 13, Issue 26 (9-2025) Back to browse issues page
مجله حفاظت زیست بوم گیاهان Journal of Plant Ecosystem Conservation
Persian site map - English site map - Created in 0.07 seconds with 37 queries by YEKTAWEB 4732