[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 10, Issue 20 (9-2022) ::
PEC 2022, 10(20): 207-224 Back to browse issues page
Potential geographic distribution of Prangos ferulacea (L.) Lindl. in Chaharmahal va Bakhtiari province under climate change scenarios
Fereshteh Babaei, Ataollah Ebrahimi, Ali asghar Naghipour *, Maryam Haidarian
Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord, I.R. Iran. , aa.naghipour@sku.ac.ir
Abstract:   (166 Views)
Prangos ferulacea (L.) Lindl is a perennial plant that besides fodder and medicinal values the plant can help to control soil erosion. There is little knowledge about the effect of climate change on the Prangos genus especially P. ferulacea. In this study, we used ensemble modeling based on five species distribution models to predict the potential effects of climate change on the future geography distribution of Prangos ferulace. The presence of P. ferulacea points was recorded from our field surveys (during the years 2019 and 2020) in Chaharmahal-va-Bakhtiari province as a part of Central Zagros, Iran. The future projections were made for the year 2070 with three SSP126, SSP370, and SSP585 scenarios and general circulation model GFDL-ESM4. To do this, species occurrence data (48 points), along with 11 environmental variables including bioclimatic, physiographic and land cover/land use variables were used. Our findings show that the estimated suitable habitats of the species covers about 30.88% of the study area for the P. ferulacea. The Precipitation of the wettest month, Mean diurnal range and Precipitation seasonality had the greatest effects on the species’ distribution in the study area. The decline of suitable habitats will be 23.98% to 32.4% by 2070. In contrast, 9.3% to 20.3% of currently unsuitable habitats can become suitable with climate changes. Also, the results showed excellent performance of the Ensemble model (AUC= 0.97, TSS= 0.83). The results of the present study can provide valuable information for policymakers and planners to adapt and conserve this species against future climate change.
Keywords: Ensemble modeling, Species distribution modeling, Central Zagros region, Biomod2.
Full-Text [PDF 733 kb]   (45 Downloads)    
Type of Study: Research | Subject: Special
Received: 2022/04/21 | Accepted: 2022/05/30 | Published: 2022/09/22
1. Abbasian, M., Moghim, S., Abrishamchi, A. 2019. Performance of the general circulation models in simulating temperature and precipitation over Iran. Theoretical and Applied Climatology, 135(3):1465-1483.
2. Amici, V., Marcantonio, M., La Porta, N., Rocchini, D. 2017. A multi-temporal approach in MaxEnt modelling: A new frontier for land use/land cover change detection. Ecological informatics, 40: 40-49.
3. Anderson, M. G., Ferree, C. E. 2010. Conserving the stage: climate change and the geophysical underpinnings of species diversity. PloS one, 5(7): e11554.
4. Ardestani, E. G., Ghahfarrokhi, Z. H. 2021. Ensembpecies distribution modeling of Salvia hydrangea under future climate change scenarios in Central Zagros Mountains, Iran. Global Ecology and Conservation, 26: e01488.
5. Byeon, D. H., Jung, S., Lee, W. H. 2018. Review of CLIMEX and MaxEnt for studying species distribution in South Korea. Journal of Asia-Pacific Biodiversity, 11(3): 325-333.
6. Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., Lawler, J. J. 2007. Random forests for classification in ecology. Ecology, 88(11): 2783-2792.
7. Del Río, S., Álvarez-Esteban, R., Cano, E., Pinto-Gomes, C., Penas, Á. 2018. Potential impacts of climate change on habitat suitability of Fagus sylvatica L. forests in Spain. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 152(6): 1205-1213.
8. Esfanjani, J., Ghorbani, A., Moameri, M., Zarechahouki, M. A., Esmali Ouri, A., Mirzaei Mossivand, A. 2020. Prediction of distribution of Prangos Uloptera DC. Using two modeling techniques in the southern rangelands of Ardabil Province, Iran. Journal of Rangeland Science, 10(2): 137-148.
9. Franklin, J. 2010. Mapping species distributions: spatial inference and prediction. Cambridge University Press.
10. Guillera‐Arroita, G., Lahoz‐Monfort, J.J., Elith, J., Gordon, A., Kujala, H., Lentini, P.E., McCarthy, M.A., Tingley, R. Wintle, B.A. 2015. Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography, 24(3):276-292.
11. Haidarian, M., Tamartash, R., Jafarian-Jeloudar, Z., Tarkesh, M., Tataian, M. R. 2021. The effects of climate change on the future distribution of Astragalus adscendens in Central Zagros, Iran. Journal of Rangeland Science, 11(2): 152-170.
12. Hao, T., Elith, J., Guillera‐Arroita, G., Lahoz‐Monfort, J.J. 2019. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Diversity and Distributions, 25(5): 839-852.
13. Hunnam P. 2011. Conservation of biodiversity in the Central Zagros Landscape conservation zone: Mid-Term evaluation report. Government of the Islamic Republic of Iran, United Nations Development Program. Global.
14. Jaafari, A., Gholami, D. M., Zenner, E. K. 2017. A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran. Ecological informatics, 39: 32-44.
15. Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N.E., Linder, H.P., Kessler, M. 2021. Climatologies at high resolution for the earth’s land surface areas. Scientific data, 4(1): 1-20.
16. Khajoei Nasab, F., Mehrabian, A., Mostafavi, H., Neemati, A. 2022. The influence of climate change on the suitable habitats of Allium species endemic to Iran. Environmental Monitoring and Assessment, 194(3):1-20.
17. Kumar, S., Stohlgren, T. J. 2009. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and the Natural Environment, 1(4): 094-098.
18. Mazangi, A., Ejtehadi, H., Mirshamsi, O., Ghassemzadeh, F., Hosseinianyousefkhani, S. S. 2016. Effects of climate change on the distribution of endemic Ferula xylorhachis Rech. f. (Apiaceae: Scandiceae) in Iran: Predictions from ecological niche models. Russian journal of ecology, 47(4): 349-354.
19. Naghipour Borj, A. A., Ostovar, Z., Asadi, E., 2019. The influence of climate change on distribution of an endangered medicinal plant (Fritillaria Imperialis L.) in central Zagros. Journal of Rangeland Science, 9(2):159-171.
20. Naghipour, A.A., Teimoori Asl, S., Ashrafzadeh, M.R. and Haidarian, M. 2021. Predicting the Potential Distribution of Crataegus azarolus L. under Climate Change in Central Zagros, Iran. Journal of Wildlife and Biodiversity. 5(4): 28-43.
21. Papeş, M., Gaubert, P. 2007. Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Diversity and distributions, 13(6): 890-902.
22. Pearson, R. G., Thuiller, W., Araújo, M. B., Martinez‐Meyer, E., Brotons, L., McClean, C Miles L, Segurado P, Dawson TP, Lees, D.C .2006. Model‐based uncertainty in species range prediction. Journal of biogeography, 33(10): 1704-1711.
23. Pearson, R. G. 2007. Species’ distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History, 50: 54-89.
24. Rajpoot, R., Adhikari, D., Verma, S., Saikia, P., Kumar, A., Grant, K. R, et al. 2020. Climate models predict a divergent future for the medicinal tree Boswellia serrata Roxb. in India. Global Ecology and Conservation, 23: e01040.
25. Rana, S. K., Rana, H. K., Ghimire, S. K., Shrestha, K. K., Ranjitkar, S. 2017. Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. Journal of Mountain Science, 14(3): 558-570.
26. Rehfeldt, G. E., Crookston, N. L., Sáenz-Romero, C., Campbell, E. M. 2012. North American vegetation model for land‐use planning in a changing climate: A solution to large classification problems. Ecological Applications, 22(1): 119-141.
27. Sangoony, H., Vahabi, M., Tarkesh, M., Soltani, S. 2016. Range shift of Bromus tomentellus Boiss. as a reaction to climate change in Central Zagros, Iran. Applied ecology and environmental research, 14(4): 85-100.
28. Thuiller, W., Georges, D., Engler, R., Breiner, F., Georges, M. D., Thuiller, C. W. 2016. Package ‘biomod2’. Species distribution modeling within an ensemble forecasting framework.
29. Thuiller, W. 2003. BIOMOD–optimizing predictions of species distributions and projecting potential future shifts under global change. Global change biology. 9(10):1353-62.
30. Uğurlu, E., Oldeland, J. 2012. Species response curves of oak species along climatic gradients in Turkey. International journal of biometeorology, 56(1): 85-93.
31. Wei, B., Wang, R., Hou, K., Wang, X., Wu, W. 2018. Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Global Ecology and Conservation, 16: e00477.
32. Xu, Y., Huang, Y., Zhao, H., Yang, M., Zhuang, Y., Ye, X. 2021. Modelling the effects of climate change on the distribution of endangered Cypripedium japonicum in China. Forests, 12(4): 429.
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Babaei F, Ebrahimi A, Naghipour A A, Haidarian M. Potential geographic distribution of Prangos ferulacea (L.) Lindl. in Chaharmahal va Bakhtiari province under climate change scenarios. PEC 2022; 10 (20) :207-224
URL: http://pec.gonbad.ac.ir/article-1-852-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 20 (9-2022) Back to browse issues page
مجله حفاظت زیست بوم گیاهان Journal of Plant Ecosystem Conservation
Persian site map - English site map - Created in 0.05 seconds with 30 queries by YEKTAWEB 4505