1. Afrin, S., Gupta, A., Farjad, B., Ahmed, M.R., Achari, G., Hassan, Q.K. 2019. Development of land-use/land-cover maps using landsat-8 and MODIS data, and their integration for hydro-ecological applications. Sensors, 19: 4891. 2. Ahmad, M.W., Mourshed, M., Rezgui, Y. 2017. Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energy and Buildings 147: 77-89. 3. de Freitas, E.C.S., de Paiva, H.N., Neves, J.C.L., Marcatti, G.E., Leite, H.G. 2020. Modeling of eucalyptus productivity with artificial neural networks. Industrial Crops and Products, 146, 112149. 4. Devotta, S., Chelanib, A., Vonsild, A. 2021. Prediction of flammability classifications of refrigerants by artificial neural network and random forest modelPrévision des classifications d'inflammabilité des frigorigènes par un réseau neuronal artificiel et un modèle de forêt d'arbres décisionnels. International Journal of Refrigeration, 131: 947-955. 5. Dong, L., Bettinger, P., Liu, Z. 2022. Optimizing neighborhood-based stand spatial structure: Four cases of boreal forests. Forest Ecology and Management, 506: 119965. 6. Gasparri, N.I., Parmuchi, M.G., Bono, J., Karszenbaum, H., Montenegro, C.L. 2010. Assessing multi-temporal Landsat 7 ETM+ images for estimating above-ground biomass in subtropical dry forests of Argentina. Journal of Arid Environments 74: 1262-1270 . 7. Hollaus, M., Wagner, W., Maier, B., Schadauer, K. 2007. Airborne Laser Scanning of Forest Stem Volume in a Mountainous Environment. Sensors 7: 1559-1577 . 8. Latifi, H., Fassnacht, F.E., Hartig, F., Berger, C., Hernández, J., Corvalán, P., Koch, B. 2015. Stratified aboveground forest biomass estimation by remote sensing data. International Journal of Applied Earth Observation and Geoinformation 38: 229-241 . 9. Lee, S., Ryu, J.-H., Lee, M.-J., Won, J.-S. 2003. Use of an artificial neural network for analysis of the susceptibility to landslides at Boun, Korea .Environmental Geology 44: 820-833 . 10. Li, W., Buitenwerf, R., Munk, M., Bøcher, P.K., Svenning, J.C. 2020. Deep-learning based high-resolution mapping shows woody vegetation densification in greater Maasai Mara ecosystem. Remote Sensing of Environment 247: 111953. 11. Liu, J., Wang, X., Wang, T. 2019. Classification of tree species and stock volume estimation in ground forest images using Deep Learning. Computers and Electronics in Agriculture, 166: 105012 . 12. Lu, X., 2005. Spatial variability and temporal change of water discharge and sediment flux in the lower Jinsha tributary: impact of environmental changes. River Research and Applications, 21: 229-243 . 13. McRoberts, R.E., Tomppo, E.O., 2007. Remote sensing support for national forest inventories. Remote sensing of environment, 110: 412-419. 14. Pham, T.A., Ly, H.-B., Tran, V.Q., Giap, L.V., Vu, H.-L.T., Duong, H.-A.T., 2020. Prediction of pile axial bearing capacity using artificial neural network and random forest. Applied Sciences, 10: 1871 . 15. Rencher, A.C., Christensen, W.F. 2012. Chapter 10, Multivariate regression–Section 10.1, Introduction. Methods of multivariate analysis. Wiley Series in Probability and Statistics, 709: 19 . 16. Santoro, M., Eriksson, L., Askne, J., Schmullius, C. 2006. Assessment of stand‐wise stem volume retrieval in boreal forest from JERS‐1 L‐band SAR backscatter. International Journal of Remote Sensing, 27: 3425-3454 . 17. Seyhan, I. 2004. RS & GIS (Remote Sensing & Geographical Information Systems) . 18. Sylvain, J.-D., Drolet, G., Brown, N. 2019. Mapping dead forest cover using a deep convolutional neural network and digital aerial photography. ISPRS Journal of Photogrammetry and Remote Sensing 156: 14-26. 19. Triepke, F.J., 2017. Fuzzy classification of vegetation for ecosystem mapping, Mapping Forest Landscape Patterns, Springer, pp. 63-103 . 20. Wang, L., Liu, J., Xu, S., Dong, J., Yang, Y. 2017. Forest above ground biomass estimation from remotely sensed imagery in the mount tai area using the RBF ANN algorithm. Intelligent Automation & Soft Computing, 1 -8. 21. Wang, Y., Zhang, X., Guo, Z. 2021. Estimation of tree height and aboveground biomass of coniferous forests in North China using stereo ZY-3, multispectral Sentinel-2, and DEM data. Ecological Indicators 126: 107645 . 22. Xu, C., Manley, B., Morgenroth, J. 2018. Evaluation of modelling approaches in predicting forest volume and stand age for small-scale plantation forests in New Zealand with RapidEye and LiDAR, Int J Appl Earth Obs Geoinformation 73: 386–396. 23. Zekić-Sušac, M., Has, A., Knežević, M. 2021. Predicting energy cost of public buildings by artificial neural networks, CART, and random forest, Neurocomputing, 439: 223-233.
|