[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 13, Issue 26 (9-2025) ::
PEC 2025, 13(26): 28-38 Back to browse issues page
Utilization of Environmental Factor Modeling in Habitat Suitability Assessment of Ferula assa-foetida in Hormozgan Province
Mahdiyeh Iranm
Abstract:   (1084 Views)
Ferula assa-foetida is a plant native to Asia that adapts well to Iran’s climate. It is valued not only for its medicinal properties but also for its strong root system and ability to produce significant organic matter, which helps protect the soil. The current study aims to assess the potential habitats where this plant can thrive. In Hormozgan Province, due to the large size of the area, presence points were sampled through field visits conducted in 2019, resulting in 503 usable locations where the plant was recorded. The modeling process used the Biomod 2 package, incorporating 19 bioclimatic variables and 7 additional environmental factors related to NDVI and topography. The data were split into 70% for model training and 30% for testing model accuracy. Among the various algorithms available in the Biomod 2 package, the most effective was selected based on ROC and TSS scores. The results showed that the random forest algorithm performed best, with a TSS score of 0.96 and an ROC score of 0.99. The most influential factor affecting the plant's distribution was identified as Bio19, which measures rainfall during the coldest quarter, accounting for 31% of the model's predictive power. The least influential factor was geographical aspect, contributing less than 1% to the model. Overall, the findings indicate that climate factors, especially rainfall, play a crucial role in determining suitable habitats for Ferula assa-foetida. The areas with the highest potential for this species are the mountainous northern and western parts of Hormozgan Province, which receive heavy rainfall. These results provide a scientific basis for conservation, promotion, and sustainable cultivation of Ferula assa-foetida in Hormozgan.
 
Article number: 3
Keywords: Assa-foetida, Precipitation, Distribution, NDVI, Medicinal Plants
Full-Text [PDF 1253 kb]   (548 Downloads)    
Type of Study: Research | Subject: Special
Received: 2024/06/9 | Accepted: 2024/08/12 | Published: 2025/09/15
References
1. Brambilla, M., Rubolini, D., Appukuttan, O., Calvi, G., Karger, D.N., Kmecl, P., Miheliˇc, T.; Sattler, T.; Seaman, B. Teufelbauer, N. 2022. Identifying climate refugia for high-elevation Alpine birds under current climate warming predictions. Glob. Change Biol., 28, 4276–4291.
2. Castillo, A.E., Peña, L.S., Delgado, S.G. 2017. Trayectorias Socioeconómicas Compartidas (SSP): Nuevas maneras de comprender el cambio climático y social. Estud. Demográficos Urbanos, 32, 669–693.
3. Cheng, R., Wang, X., Zhang, J., Zhao, J., Ge, Z., Zhang, Z. 2022. Predicting the Potential Suitable Distribution of Larix principis-rupprechtii Mayr under Climate Change Scenarios. Forests, 13, 1428. https://doi.org/10.3390/f13091428.
4. Duan, X., Li, J., Wu, S. 2022. MaxEnt Modeling to Estimate the Impact of Climate Factors on Distribution of Pinus densiflora. Forests, 13, 402. https://doi.org/10.3390/f13030402.
5. Elith, J., & Franklin, J. (2013). Species distribution modeling. In Encyclopedia of Biodiversity: Second Edition (pp. 692-705). Elsevier Inc.
6. Elith, J., Ferrier, S., Huettmann, F., Leathwick, J. 2005.The evaluation strip: A new and robust method for plotting predicted responses from species distribution models. Ecol. Model. 186, 280–289. https://doi.org/10.1016/j.ecolmodel.2004.12.007.
7. Fassou, G., Kougioumoutzis, K., Iatrou, G., Trigas, P., Papasotiropoulos, V. 2020. Genetic Diversity and Range Dynamics of Helleborusodorus subsp. cyclophyllus under Different Climate Change Scenarios.Forests,11,620. https://doi.org/10.3390/f11060620.
8. Gao, M., Tim, N., Zhang, C., Li, F., Wu, Y., Luo, Q., Wang, Z., Liu, L., Sa, R. 2024. Modelling the potential distribution area of Populus davidiana in China based on the Biomod2. JOURNAL OF NANJING FORESTRY UNIVERSITY, 48(2), p.247. https://doi.org/10.12302/j.issn.1000-2006.202205022.
9. Hamann, A., & Wang, T. (2006). Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology, 87(11), 2773-2786.
10. Hadley, W. 2016. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, p. 260.
11. Hao, T., Elith, J., Guillera-Arroita, G., Lahoz-Monfort, J.J. 2019. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib., 25, 839–852. https://doi.org/10.1111/ddi.12892.
12. Hoban, S., Dawson, A, Robinson, J.D., Smith, A, B., Strand, A, E. 2019. Inference of biogeographic history by formally integrating distinct lines of evidence: Genetic, environmental niche and fossil. Ecography, 42, 1991–2011. https://doi.org/10.1111/ecog.04327.
13. Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., ... & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific data, 4(1), 1-20.
14. Lawler, J. J., White, D., Neilson, R. P., & Blaustein, A. R. (2006). Predicting climate‐induced range shifts: model differences and model reliability. Global change biology, 12(8), 1568-1584.
15. Mestre, F., Barbosa, S., Garrido‐García, J. A., Pita, R., Mira, A., Alves, P. C., ... & Beja, P. (2022). Inferring past refugia and range dynamics through the integration of fossil, niche modelling and genomic data. Journal of Biogeography, 49(11), 2064-2076. https://doi.org/10.1111/jbi.14492.
16. Metzger, M.J., Bunce, R.G.H., Jongman, R.H.G., Sayre, R., Trabucco, A., Zomer, R. 2013. A high-resolution bioclimate map of the world: A unifying framework for global biodiversity research and monitoring. Glob. Ecol. Biogeogr., 22, 630–638. https://doi.org/10.1111/jbi.14492.
17. Naimi, B., Hamm, N. A., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography, 37(2), 191-203.
18. Phillips, S.J., Anderson, R.P., Schapire, R.E. 2006. Schapire, Maximum entropy modeling of species geographi distributions. Ecol.Model., 90, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026.
19. Rana, S. K., Rana, H. K., Ghimire, S. K., Shrestha, K. K., & Ranjitkar, S. (2017). Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. Journal of Mountain Science, 14(3), 558-570.
20. Shrestha, U. B., Sharma, K. P., Devkota, A., Siwakoti, M., & Shrestha, B. B. (2018). Potential impact of climate change on the distribution of six invasive alien plants in Nepal. Ecological Indicators, 95, 99-107.
21. Sillero, N., Arenas-Castro, S., Enriquez‐Urzelai, U., Vale, C. G., Sousa-Guedes, D., Martínez-Freiría, F., ... & Barbosa, A. M. (2021). Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecological Modelling, 456, 109671.
22. Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H. H., & Warren, D. (2019). Niche estimation above and below the species level. Trends in ecology & evolution, 34(3), 260-273.
23. Song, H., Ordonez, A., Svenning, J. C., Qian, H., Yin, X., Mao, L., ... & Zhang, J. (2021). Regional disparity in extinction risk: Comparison of disjunct plant genera between eastern Asia and eastern North America. Global Change Biology, 27(9), 1904-1914.
24. Sood, R. (2020). Asafoetida (Ferula asafoetida): A high-value crop suitable for the cold desert of Himachal Pradesh, India. Journal of Applied and Natural Science, 12(4), 607.
25. Tang, C. Q., Matsui, T., Ohashi, H., Dong, Y. F., Momohara, A., Herrando-Moraira, S., ... & López-Pujol, J. (2018). Identifying long-term stable refugia for relict plant species in East Asia. Nature communications, 9(1), 4488.‏
26. Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD–a platform for ensemble forecasting of species distributions. Ecography, 32(3), 369-373.
27. Waldron, A., Mooers, A. O., Miller, D. C., Nibbelink, N., Redding, D., Kuhn, T. S., ... & Gittleman, J. L. (2013). Targeting global conservation funding to limit immediate biodiversity declines. Proceedings of the National Academy of Sciences, 110(29), 12144-12148.
28. Zurell, D., Franklin, J., König, C., Bouchet, P. J., Dormann, C. F., Elith, J., ... & Merow, C. (2020). A standard protocol for reporting species distribution models. Ecography, 43(9), 1261-1277.
Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Iranm M. Utilization of Environmental Factor Modeling in Habitat Suitability Assessment of Ferula assa-foetida in Hormozgan Province. PEC 2025; 13 (26) : 3
URL: http://pec.gonbad.ac.ir/article-1-982-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 13, Issue 26 (9-2025) Back to browse issues page
مجله حفاظت زیست بوم گیاهان Journal of Plant Ecosystem Conservation
Persian site map - English site map - Created in 0.07 seconds with 37 queries by YEKTAWEB 4732