|
1. Brambilla, M., Rubolini, D., Appukuttan, O., Calvi, G., Karger, D.N., Kmecl, P., Miheliˇc, T.; Sattler, T.; Seaman, B. Teufelbauer, N. 2022. Identifying climate refugia for high-elevation Alpine birds under current climate warming predictions. Glob. Change Biol., 28, 4276–4291. 2. Castillo, A.E., Peña, L.S., Delgado, S.G. 2017. Trayectorias Socioeconómicas Compartidas (SSP): Nuevas maneras de comprender el cambio climático y social. Estud. Demográficos Urbanos, 32, 669–693. 3. Cheng, R., Wang, X., Zhang, J., Zhao, J., Ge, Z., Zhang, Z. 2022. Predicting the Potential Suitable Distribution of Larix principis-rupprechtii Mayr under Climate Change Scenarios. Forests, 13, 1428. https://doi.org/10.3390/f13091428. 4. Duan, X., Li, J., Wu, S. 2022. MaxEnt Modeling to Estimate the Impact of Climate Factors on Distribution of Pinus densiflora. Forests, 13, 402. https://doi.org/10.3390/f13030402. 5. Elith, J., & Franklin, J. (2013). Species distribution modeling. In Encyclopedia of Biodiversity: Second Edition (pp. 692-705). Elsevier Inc. 6. Elith, J., Ferrier, S., Huettmann, F., Leathwick, J. 2005.The evaluation strip: A new and robust method for plotting predicted responses from species distribution models. Ecol. Model. 186, 280–289. https://doi.org/10.1016/j.ecolmodel.2004.12.007. 7. Fassou, G., Kougioumoutzis, K., Iatrou, G., Trigas, P., Papasotiropoulos, V. 2020. Genetic Diversity and Range Dynamics of Helleborusodorus subsp. cyclophyllus under Different Climate Change Scenarios.Forests,11,620. https://doi.org/10.3390/f11060620. 8. Gao, M., Tim, N., Zhang, C., Li, F., Wu, Y., Luo, Q., Wang, Z., Liu, L., Sa, R. 2024. Modelling the potential distribution area of Populus davidiana in China based on the Biomod2. JOURNAL OF NANJING FORESTRY UNIVERSITY, 48(2), p.247. https://doi.org/10.12302/j.issn.1000-2006.202205022. 9. Hamann, A., & Wang, T. (2006). Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology, 87(11), 2773-2786. 10. Hadley, W. 2016. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, p. 260. 11. Hao, T., Elith, J., Guillera-Arroita, G., Lahoz-Monfort, J.J. 2019. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib., 25, 839–852. https://doi.org/10.1111/ddi.12892. 12. Hoban, S., Dawson, A, Robinson, J.D., Smith, A, B., Strand, A, E. 2019. Inference of biogeographic history by formally integrating distinct lines of evidence: Genetic, environmental niche and fossil. Ecography, 42, 1991–2011. https://doi.org/10.1111/ecog.04327. 13. Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., ... & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific data, 4(1), 1-20. 14. Lawler, J. J., White, D., Neilson, R. P., & Blaustein, A. R. (2006). Predicting climate‐induced range shifts: model differences and model reliability. Global change biology, 12(8), 1568-1584. 15. Mestre, F., Barbosa, S., Garrido‐García, J. A., Pita, R., Mira, A., Alves, P. C., ... & Beja, P. (2022). Inferring past refugia and range dynamics through the integration of fossil, niche modelling and genomic data. Journal of Biogeography, 49(11), 2064-2076. https://doi.org/10.1111/jbi.14492. 16. Metzger, M.J., Bunce, R.G.H., Jongman, R.H.G., Sayre, R., Trabucco, A., Zomer, R. 2013. A high-resolution bioclimate map of the world: A unifying framework for global biodiversity research and monitoring. Glob. Ecol. Biogeogr., 22, 630–638. https://doi.org/10.1111/jbi.14492. 17. Naimi, B., Hamm, N. A., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography, 37(2), 191-203. 18. Phillips, S.J., Anderson, R.P., Schapire, R.E. 2006. Schapire, Maximum entropy modeling of species geographi distributions. Ecol.Model., 90, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026. 19. Rana, S. K., Rana, H. K., Ghimire, S. K., Shrestha, K. K., & Ranjitkar, S. (2017). Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. Journal of Mountain Science, 14(3), 558-570. 20. Shrestha, U. B., Sharma, K. P., Devkota, A., Siwakoti, M., & Shrestha, B. B. (2018). Potential impact of climate change on the distribution of six invasive alien plants in Nepal. Ecological Indicators, 95, 99-107. 21. Sillero, N., Arenas-Castro, S., Enriquez‐Urzelai, U., Vale, C. G., Sousa-Guedes, D., Martínez-Freiría, F., ... & Barbosa, A. M. (2021). Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecological Modelling, 456, 109671. 22. Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H. H., & Warren, D. (2019). Niche estimation above and below the species level. Trends in ecology & evolution, 34(3), 260-273. 23. Song, H., Ordonez, A., Svenning, J. C., Qian, H., Yin, X., Mao, L., ... & Zhang, J. (2021). Regional disparity in extinction risk: Comparison of disjunct plant genera between eastern Asia and eastern North America. Global Change Biology, 27(9), 1904-1914. 24. Sood, R. (2020). Asafoetida (Ferula asafoetida): A high-value crop suitable for the cold desert of Himachal Pradesh, India. Journal of Applied and Natural Science, 12(4), 607. 25. Tang, C. Q., Matsui, T., Ohashi, H., Dong, Y. F., Momohara, A., Herrando-Moraira, S., ... & López-Pujol, J. (2018). Identifying long-term stable refugia for relict plant species in East Asia. Nature communications, 9(1), 4488. 26. Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD–a platform for ensemble forecasting of species distributions. Ecography, 32(3), 369-373. 27. Waldron, A., Mooers, A. O., Miller, D. C., Nibbelink, N., Redding, D., Kuhn, T. S., ... & Gittleman, J. L. (2013). Targeting global conservation funding to limit immediate biodiversity declines. Proceedings of the National Academy of Sciences, 110(29), 12144-12148. 28. Zurell, D., Franklin, J., König, C., Bouchet, P. J., Dormann, C. F., Elith, J., ... & Merow, C. (2020). A standard protocol for reporting species distribution models. Ecography, 43(9), 1261-1277.
|