1. Bates, D.M.&D.G. Watts, 1980. Relative curvature measures of nonlinearity. Journal of the Royal Statistical Society, Series B, 42: 1–16. 2. Buford, M.A. 1986. Height–diameter relationship at age 15 in loblolly pine seed sources. Forest Science, 32: 812–818. 3. Burk, T.E.&H.E. Burkhart, 1984. Diameter distributions and yields of natural stands of loblolly pine. Blacksburg, Vir¬ginia Polytechnic Institute and State University, Blacksburg Publishing: 46. 4. Burkhart, H.E&M.R. Strub, 1974. A model for simulation of planted loblolly pine stands. In: Fries J. (ed.): Growth Models for Tree and Stand Simulation. Stockholm. Royal College of Forestry, Research Note, 30: 128–135. 5. Cameron, A.C.& F.A.G. Windmeijer, 1997. An R-squared measure of goodness of fit for some common nonlinear regression models. Journal of Economy, 77: 329–342. 6. Chapman, D G. 1961. Statistical problems in dynamics of exploited fisheries populations.In: Neyman J, editor. Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 4, 1 53–1 68. Berkeley, CA: University of California Press. 7. Curtis, R.O. 1967. Height-diameter and height-diameter-age equations for second-growth Douglas-Fir. Forest Science, 13: 365 –375. 8. Eby, M., S.O. Oyamakin& A.U. Chukwu, 2017. A new nonlinear model applied to the height-DBH relationship inGmelina arboreaWayne. Forest Ecology and Management, 397: 139–149. 9. Ercanli, I., A. Gunlu & E.Z. Baskent, 2015. Mixed effect models for predicting breast height diameter from stump diameter of Oriental beech in Gölda˘g. Scientia Agricola, 72(3): 245-251. 10. Farr, W.A., D.J. De Mas &J.E. Dealy, 1989. Height and crown width related to diameter for open-grown western hemlock and Sitka spruce. Canadian Journal of Forest Research, 19: 1203–1207. 11. Guo, X.&X. Zhang, 2010. Performance of 14 hybrid poplar clones grown in Beijing, China. Biomass and Bioenergy, 34: 906–911. 12. Huang, S., S.J. Titus&D.P. Wiens, 1992. Comparison of nonlinear height–diameter functions for major Alberta tree species. Canadian Journal of Forest Research, 22(9): 1297-1304. 13. Kalbi, S., A. Fallah, P. Bettinger, Sh. Shataee & R. Yousefpour, 2017. Mixed-effects modeling for tree height prediction models of Oriental beech in the Hyrcanian forests. Journal of Forest Research, 29: 1195-1204. 14. Larson, B.C. 1986. Development and growth of even-aged stands of Douglas-fir and grand fir. Canadian Journal of Forest Research, 16: 367–372. 15. Larsen, D.R.&D.W. Hann, 1987. Height-diameter Equations for Seventeen Tree Species in Southwest Oregon. Oregon State University, Increment for Models of Forest Growth. Research Paper INT-164, Published by U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, USA, 23p 16. Loetsch, F., F. Zöhrer & K.E. Haller, 1973. Forest Inventory. Munich, BLV Verlagsgesellschaft: 469. 17. Lumbres, R.I.C., Y.J. Lee, F.G.Calora Jr&M.R. Parao, 2013. Model fitting and validation of six height–DBH equations for Pinus kesiyaRoyle ex Gordon in Benguet Province, Philippines. Forest science and Technology, 9(1): 45-50. 18. Lumbres, R.I.C., Y.J. Lee, Y.O. Seo,S.H. Kim, J.K. Choi & W.K. Lee, 2011. Development and validation of nonlinear height–DBH models for major coniferous tree species in Korea. Forest Science and Technology, 7(3): 117-125. 19. Meyer, H.A. 1940. A mathematical expression for height curves. Journal of Forestry, 38: 415–420. 20. Moffat A.J., R.W. Matthews &J.E. Hall, 1991. The effects of sewage sludge on growth and foliar and soil chemistry in pole-stage Corsican pine at Ringwood Forest, Dorset, UK. Canadian Journal of Forest Research, 21: 902–909. 21. Navroodi, I.H., S.J. Alavi, M.K. Ahmadi & M. Radkarimi, 2016. Comparison of different non-linear models for prediction of the relationship between diameter and height of velvet maple trees in natural forests (Case study: Asalem Forests, Iran). Journal of Forest Science, 62(2): 65-71. 22. Pearl, R.& L.J. Reed, 1920.On the rate of growth of the population of United States since 1790 and its mathematical representation. Proceedings of the National Academy of Science of the United States of America, 6: 275–288. 23. Peng, Ch., L. Zhang, X. Zhou & Q. Dang, 2004. Developing and evaluating tree height-diameter models at three geographic scales for black spruce in Ontario. Northern Journal of Applied forestry, 21 (2): 83-92. 24. Petras, R., M. Bošeľa, J. Mecko, J. Oszlányi & I. Popa, 2014. Height-diameter models for mixed-species forests consisting of spruce, fir, and beech. Folia Forestalia Polonica, Series A, 56(2), 93–104. 25. Piao, D., M. Kim, G.M. Choi, J. Moon, H. Yu,W.K. Lee, S.W. Wang, S.W. Jeon, Y. Son, Y.M. Son & G. Cui, 2018. Development of an Integrated DBH EstimationModel Based on Stand and Climatic Conditions. Forests 9(155): 1-18. 26. Prodan, M. &S.H. Gardiner, 1968. Forestbiometrics. Pergamon Press, Oxford, 447 p. 27. Ratkowsky, D. 1990. Handbook of nonlinear regression models. Marcel Dekker, New York, NY. 28. Ratkowsky, D.A.& T.J. Reedy, 1986. Choosing near-linear parameters in the four-parameter logistic model for radioligand and related assays. Biometrics, 42: 575-582. 29. Richards, F.J. 1959. A flexible growth function for empirical use. Journal of Experimental botany, 10: 290 –300. 30. Saramaki, J. 1992. Growth and yield prediction model of Pinus kesiya (Royle Ex Gordon) in Zambia. Forestelia Fennica Acta, 230, 68. 31. Schnute, J. 1981. A versatile growth model with statistically stable parameters. Canadian Journal of Fisheries and Aquatic Sciences, 38(9): 1128-1140. 32. Schreuder, H.T., W.L. Hafley&F.A. Bannett, 1979. Yield prediction for unthinned natural slash pine stands. Forest Science, 25: 25–30. 33. Sibbesen, E. 1981. Some new equations to describe phos¬phate sorption by soils. European Journal of Soil Science, 32: 67–74. 34. Stage, A.R. 1963. A mathematical approach to polymorphic site index curves for grand fir. Forest Science, 9(2): 167-180. 35. Stage, A.R. 1975. Prediction of height increment for models of forest growth. Research Paper INT-164. Ogden, Inter mountain Forest and Range Experiment Station, USDA Forest Service: 20. 36. Stoffels A.&J. Van Soest, 1953. The main problems in sample plots. 3. Height regression. Ned Bosbouwtijdschr, 25: 190- 199. 37. Watts, S.B. 1983. Forestry Handbook for British Columbia. 4th Ed. Vancouver, University of British Columbia: 773. 38. Winsor, C.P. 1932. The Gomperz curve as growth curve. Proceedings of the National Academy of Sciences of the United States of America, 18: 1-8. 39. Wykoff, W., N. Crookston &A. Stage, 1982. User’s guide to the stand prognosis model. Ogden, Utah: US. 40. Yang, R.C., A.Kozak & J.H.G. Smith, 1978. The potential of Weibull type functions as flexible growth curves. Canadian Journal of Forest Research 8(4): 424-431. 41. Zeide, B. 1989. Accuracy of equations describing diameter growth. Canadian Journal of Forest Research, 19(10): 1283- 1286. 42. Zhang, X., A. Duan, J. Zhang & C. Xiang, 2014. Estimating Tree Height-Diameter Models with the Bayesian Method. The Scientific World Journal, 3:683-691.
|