[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 10, Issue 20 (9-2022) ::
PEC 2022, 10(20): 185-206 Back to browse issues page
Economic Evaluation of Carbon Sequestration in Zagros Oak Forests (Case Study: The Pahnus Forest habitat, Chaharmahal and Bakhtiari Province)
Seyedeh Samira Soleimanipour1 , Kamran Adeli * , Davood Mafi-Gholami3 , Hamed Naghavi1
1- Lorestan University, Khorramabad
Faculty of Agricultural and Natural Resources, Lorestan University, Khorramabad, Lorestan University, Khorramabad , adeli.k@lu.ac.ir
3- Shahrekord University, Shahrekord
Abstract:   (1880 Views)
Examining the economic value of carbon sequestration in forests is essential, given the risk of global climate change, which has posed a profound challenge to societies internationally. The present study investigates the amount of carbon sequestration and its economic value in the oak forests (Quercus brantii L.) of Pahnus forest habitat with an area of 990 ha, located in Chaharmahal va Bakhtiari Province, western Iran. For this purpose, systematic sampling with random starting points was chosen, and required variables such as diameter at breast height, tree height, and canopy diameter of all trees in 100 sample plots with dimensions of 60 × 60 m were collected. The  biomass value in the aerial and below-ground organs of trees was estimated using two methods, allometric equations, and the density method. Then, the value of storage and sequestrated carbon was calculated by the trees' dry biomass using experimental formulas, and the carbon tax rate was determined to value the function of carbon sequestration. The results showed that the value of carbon sequestration per hectare of these forests using allometric equations and the density method is 0.83 and 0.74 Mg C ha-1 y-1, respectively. Considering USD 60 as a tax rate per Mg C, the economic value of carbon sequestration in each method was estimated at USD 50.05 and USD 44.47 ha-1 for 2020, respectively. The results of this study show the high carbon sequestration capacity of the Pahnus Forest. Thus, the proper conservation and management of such forests can lead to the storage of a significant atmospheric carbon value.
Keywords: Climate change, Pahnus forest habitat, Biomass, Allometric equations, Carbon tax rate
Full-Text [PDF 669 kb]   (462 Downloads)    
Type of Study: Research | Subject: Special
Received: 2022/01/22 | Accepted: 2022/05/30 | Published: 2022/09/22
References
1. Ashournejad, Q., Amiraslani, F., Moghadam, M.K., Toomanian, A. 2019. Assessing the changes of mangrove ecosystem services value in the Pars Special Economic Energy Zone. Ocean & Coastal Management, 179: 104838.
2. Brown, S. 1997. Estimating biomass and biomass change of tropical forests: a primer (Vol. 134). Food & Agriculture Org.
3. Change, I. C. 2014. Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change, 1454, 147.
4. Cotillas, M., Espelta, J. M., Sanchez-Costa, E., Sabaté, S. 2016. Aboveground and belowground biomass allocation patterns in two Mediterranean oaks with contrasting leaf habit: an insight into carbon stock in young oak coppices. European journal of forest research, 135(2): 243-252.
5. Dai, L., Jia, J., Yu, D., Lewis, B.J., Zhou, L., Zhou, W., Zhao, W., Jiang, L. 2013. Effects of climate change on biomass carbon sequestration in old-growth forest ecosystems on Changbai Mountain in Northeast China. Forest Ecology and Management, 300: 106-116.
6. Deng, S., Shi, Y., Jin, Y., Wang, L. 2011. A GIS-based approach for quantifying and mapping carbon sink and stock values of forest ecosystem: A case study. Energy Procedia, 5: 1535-1545.
7. Du, H., Cui, R., Zhou, G., Shi, Y., Xu, X., Fan, W., Lu, Y. 2010. The responses of Moso bamboo (Phyllostachys heterocycla var. pubescens) forest aboveground biomass to Landsat TM spectral reflectance and NDVI. Acta Ecologica Sinica, 30(5): 257-263.
8. Estrada, G. C. D., Soares, M. L. G., Fernadez, V., de Almeida, P. M. M. 2015. The economic evaluation of carbon storage and sequestration as ecosystem services of mangroves: a case study from southeastern Brazil. International Journal of Biodiversity Science, Ecosystem Services & Management, 11(1): 29-35.
9. Fan, Y., Shang, H., Wu, Y., Li, Q. 2020. Tree-Ring Width and Carbon Isotope Chronologies Track Temperature, Humidity, and Baseflow in the Tianshan Mountains, Central Asia. Forests, 11(12): 1308.
10. Flora, G., Indhu, M. A., Derisha, L., Devi, S. D., Packia, D. M., Initha, W. S., Ranjini, N. 2018. Estimation of Carbon Storage in the Tree Growth ofSt. Mary’s College (Autonomous) Campus, Thoothukudi, Tamilnadu, India.
11. Fu, L., Zhao, Y., Xu, Z., Wu, B. 2015. Spatial and temporal dynamics of forest aboveground carbon stocks in response to climate and environmental changes. Journal of soils and sediments, 15(2): 249-259.
12. Hall, J. S., Plisinski, J. S., Mladinich, S. K., van Breugel, M., Lai, H. R., Asner, G. P., Thompson, J. R. 2022. Deforestation scenarios show the importance of secondary forest for meeting Panama’s carbon goals. Landscape Ecology, 1-22.
13. Hayha, T., Franzese, P. P., Paletto, A., Fath, B. D. 2015. Assessing, valuing, and mapping ecosystem services in Alpine forests. Ecosystem Services, 14: 12-23.
14. Henareh Khalyani, A., Mayer, A. L., Falkowski, M. J., Muralidharan, D. 2013. Deforestation and landscape structure changes related to socioeconomic dynamics and climate change in Zagros forests. Journal of land use science, 8(3): 321-340.
15. Henry, M., Besnard, A., Asante, W. A., Eshun, J., Adu-Bredu, S., Valentini, R., Saint-André, L. 2010. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. Forest Ecology and Management, 260(8): 1375-1388.
16. IRIMO (I.R. of Iran Meterological Organization), 2020. Chaharmahal va Bakhtiari Meteorological Administration. http://www.chbmet.ir/en/index.asp.
17. Kauppi, P. E., Stål, G., Arnesson-Ceder, L., Sramek, I. H., Hoen, H. F., Svensson, A., Nordin, A. 2022. Managing existing forests can mitigate climate change. Forest Ecology and Management, 513, 120186.
18. Kebede, B., Soromessa, T. 2018. Allometric equations for aboveground biomass estimation of Olea europaea L. subsp. cuspidata in Mana Angetu Forest. Ecosystem Health and Sustainability, 4(1):1-12.
19. Ketterings, Q. M., Coe, R., van Noordwijk, M., Palm, C. A. 2001. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and management, 146(1-3): 199-209.
20. Koala, J., Sawadogo, L., Savadogo, P., Aynekulu, E., Heiskanen, J., Saïd, M. 2017. Allometric equations for below-ground biomass of four key woody species in West African savanna-woodlands. Silva Fennica.
21. Liu, K., Wang, J., Zeng, W., Song, J. 2017. Comparison and evaluation of three methods for estimating forest above ground biomass using TM and GLAS data. Remote Sensing, 9(4): 341.
22. Loewenstein, E. F., Johnson, P. S., Garrett, H. E. 2000. Age and diameter structure of a managed uneven-aged oak forest. Canadian Journal of Forest Research, 30(7): 1060-1070.
23. MacDicken, K. G. 1997. A guide to monitoring carbon storage in forestry and agroforestry projects.
24. Makineci, E., Ozdemir, E., Caliskan, S., Yilmaz, E., Kumbasli, M., Keten, A., Yilmaz, H. 2015. Ecosystem carbon pools of coppice-originated oak forests at different development stages. European Journal of Forest Research, 134(2): 319-333.
25. Malmsheimer, R. W., Heffernan, P., Brink, S., Crandall, D., Deneke, F., Galik, C., Ruddell, S. 2008. Forest management solutions for mitigating climate change in the United States. Journal of Forestry, 106(3): 115-173.
26. Marcos-Martinez, R., Sánchez, J. J., Srivastava, L., Soonsawad, N., Bachelet, D. 2022. Valuing the Impact of Forest Disturbances on the Climate Regulation Service of Western US Forests. Sustainability, 14(2), 903.
27. Mugasha, W. A., Eid, T., Bollandsås, O. M., Malimbwi, R. E., Chamshama, S. A. O., Zahabu, E., Katani, J. Z. 2013. Allometric models for prediction of above-and belowground biomass of trees in the miombo woodlands of Tanzania. Forest Ecology and Management, 310: 87-101.
28. Nair, P. K., Mohan Kumar, B., Naresh Kumar, S. 2018. Climate change, carbon sequestration, and coconut-based ecosystems. In The Coconut Palm (Cocos nucifera L.)-Research and Development Perspectives . Springer, Singapore. pp. 779-799.
29. Nowak, D. J., Greenfield, E. J., Hoehn, R. E., Lapoint, E. 2013. Carbon storage and sequestration by trees in urban and community areas of the United States. Environmental pollution, 178: 229-236.
30. Pache, R. G., Abrudan, I. V., Niță, M. D. 2020. Economic valuation of carbon storage and sequestration in Retezat National Park, Romania. Forests, 12(1), 43.
31. Pajtik, J., Konopka, B., Lukac, M. 2008. Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees. Forest Ecology and Management, 256(5): 1096-1103.
32. Parry, I. W., Veung, M. C., Heine, M. D. 2014. How much carbon pricing is in countries’ own interests? The critical role of co-benefits (No. 14-174). International Monetary Fund.
33. Pearson, T. R. H., Brown, S., Ravindranath, N. H., MacDicken, K., Shoch, D., Murthy, I. K., Sahana, C. A. 2005. Integrating carbon benefit estimates into GEF projects. UNDP, GEF, 1-56.
34. Postic, S., Clément, M. 2019. Global carbon account 2019.
35. Poudel, A., Sasaki, N., Abe, I. 2020. Assessment of carbon stocks in oak forests along the altitudinal gradient: A case study in the Panchase Conservation Area in Nepal. Global Ecology and Conservation, 23, e01171.
36. Ramstein, C., Dominioni, G., Ettehad, S., Lam, L., Quant, M., Zhang, J., Merusi, C. 2019. State and Trends of Carbon Pricing 2019.
37. Rana, K., Kumar, M., Kumar, A. 2020. Assessment of annual shoot biomass and carbon storage potential of grewia optiva: an approach to combat climate change in Garhwal Himalaya. Water, Air, & Soil Pollution, 231(9):1-13.
38. Rubio, A., Gavilán, R. G., Montes, F., Gutierrez-Giron, A., Díaz-Pines, E., Mezquida, E. T. 2011. Biodiversity measures applied to stand-level management: Can they really be useful?. Ecological indicators, 11(2): 545-556.
39. Safari, A., Sohrabi, H. 2019. Effect of climate change and local management on aboveground carbon dynamics (1987–2015) in Zagros oak forests using Landsat time-series imagery. Applied Geography, 110, 102048.
40. Shrestha, R., Wynne, R. H. 2012. Estimating biophysical parameters of individual trees in an urban environment using small footprint discrete-return imaging lidar. Remote Sensing, 4(2): 484-508.
41. Singh, V., Tewari, A., Kushwaha, S. P., Dadhwal, V. K. 2011. Formulating allometric equations for estimating biomass and carbon stock in small diameter trees. Forest Ecology and Management, 261(11):1945-1949.
42. Subedi, B. P., Pandey, S. S., Pandey, A., Rana, E. B., Bhattarai, S., Banskota, T. R., Tamrakar, R. 2010. Guidelines for measuring carbon stocks in community-managed forests. Oslo: Norwegian Agency for Development Cooperation.
43. Suryawanshi, M. N., Patel, A. R., Kale, T. S., Patil, P. R. 2014. Carbon sequestration potential of tree species in the environment of North Maharashtra University Campus, Jalgaon (MS) India. Bioscience Discovery, 5(2): 175-179.
44. Suchomel, C., Pyttel, P., Becker, G., Bauhus, J. 2012. Biomass equations for sessile oak (Quercus petraea (Matt.) Liebl.) and hornbeam (Carpinus betulus L.) in aged coppiced forests in southwest Germany. biomass and bioenergy, 46: 722-730.
45. Thorsen, B. J., Mavsar, R., Tyrväinen, L., Prokofieva, I., Stenger, A. 2014. The Provision of Forest Ecosystem Services. Volume 1: Quantifying and valuing non-marketed ecosystem services. What Science Can Tell Us 5.
46. Torres, A.B., MacMillan, D.C., Skutsch, M. 2015. ‘Yes-in-my-backyard’: Spatial differences in the valuation of forest services and local co-benefits for carbon markets in México. Ecological Economics, 109: 130–141.
47. Vishnu, P., Patil, S. S. 2016. Carbon storage and sequestration by trees in and around university campus of Aurangabad City Maharashtra, International Journal of Innovative Research in Science. Eng. Technol., 5(4): 5459-5468.
48. Von Gadow, K., Hui, G. 2001. Modelling forest development (Vol. 57). Springer Science & Business Media.
49. Wang, B., Waters, C., Anwar, M. R., Cowie, A., Li Liu, D., Summers, D., Feng, P. 2022. Future climate impacts on forest growth and implications for carbon sequestration through reforestation in southeast Australia. Journal of Environmental Management, 302, 113964.
50. Wang, P., Deng, X., Zhou, H., Yu, S. 2019. Estimates of the social cost of carbon: A review based on meta-analysis. Journal of cleaner production, 209: 1494-1507.
51. Wani, A. A., Joshi, P. K., Singh, O. 2015. Estimating biomass and carbon mitigation of temperate coniferous forests using spectral modeling and field inventory data. Ecological Informatics, 25: 63-70.
52. Xue, D., Tisdell, C. 2001. Valuing ecological functions of biodiversity in Changbaishan Mountain Biosphere Reserve in northeast China. Biodiversity & Conservation, 10(3): 467-481.
53. Xu, Z., Chen, C., He, J., Liu, J. 2009. Trends and challenges in soil research 2009: linking global climate change to local long-term forest productivity.
54. Yadav, V. S., Yadav, S. S., Gupta, S. R., Meena, R. S., Lal, R., Sheoran, N. S., Jhariya, M. K. 2022. Carbon sequestration potential and CO2 fluxes in a tropical forest ecosystem. Ecological Engineering, 176, 106541.
55. Yousefpour, R., Nabel, J. E., Pongratz, J. 2019. Simulating growth-based harvest adaptive to future climate change. Biogeosciences, 16(2), 241-254.
56. Zaher, H., Benjelloun, H., Mahamane, I. 2019. Effect of Oak Ecosystems Degradation on the Carbon Storage in the Southern Mediterranean Forests. Open Access Journal of Environmental and Soil Sciences 4(2)- OAJESS.MS.ID.000185.
57. Zapfack, L., Noiha, N. V., Tabue, M. R. B. 2016. Economic estimation of carbon storage and sequestration as ecosystem services of protected areas: a case study of Lobeke National Park. Journal of Tropical Forest Science, 406-415.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soleimanipour S S, Adeli K, Mafi-Gholami D, Naghavi H. Economic Evaluation of Carbon Sequestration in Zagros Oak Forests (Case Study: The Pahnus Forest habitat, Chaharmahal and Bakhtiari Province). PEC 2022; 10 (20) :185-206
URL: http://pec.gonbad.ac.ir/article-1-837-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 20 (9-2022) Back to browse issues page
مجله حفاظت زیست بوم گیاهان Journal of Plant Ecosystem Conservation
Persian site map - English site map - Created in 0.08 seconds with 37 queries by YEKTAWEB 4645