1. Al-Qaddi, N., Vessella, F., Stephan, J., Al-Eisawi D., Schirone, B. 2016. Current and future suitability areas of kermes oak (Quercus coccifera L.) in the Levant under climate change. Regional Environmental Change, 17: 143-156. 2. Archer, S., Predick, K. 2008. Climate Change and Ecosystems of the Southwestern Unites States. Journal of Society for Range management, 23-28. 3. Dalmaris, E., Ramalho, C.E., Poot, P., Veneklaas, E.J., Byrne, M. 2015. A climate change context for the decline of a foundation tree species in south-western Australia: insights from phylogeography and species distribution modelling. Annals of botany, 116(6), 941-952. 4. Elith, J., Franklin, J. 2013. Species distribution modelling. Encyclopedia of biodiversity , In ncyclopedia of Biodiversity: Second Edition ,692-705. 5. Fatemi, S.S., Rahimi, M., Tarkesh, M., Ravanbakhsh, H. 2018. Predicting the impacts of climate change on the distribution of Juniperus excelsa M. Bieb. In the central and eastern Alborz Mountains, Iran. forest-biogeosciences and forestry, 11(5): 643. 6. Fois, M., Cuena-Lombraña, A., Fenu, G., Cogoni, D., Bacchetta, G. 2016. The reliability of conservation status assessments at regional level: past, present and future perspectives on Gentiana lutea L. ssp. lutea in Sardinia. Journal for nature conservation, 33: 1-9. 7. Haidarian, M., Tamartash, R., Jafarian-Jeloudar, Z., Tarkesh, M., Tataian, M.R., 2021. The effects of climate change on the future distribution of Astragalus adscendens in central zagros, Iran. Journal of Rangeland science, 11(2), 152-170. 8. Hannah, L., Midgley, G., Millar, D. 2002. Climate change-integrated conservation strategies. Glob Ecol biogeogr, 11: 485–495. 9. He, X., Burgess, K.S., Gao, L.M., Li, D.Z. 2019. Distributional responses to climate change for alpine species of Cyananthus and Primula endemic to the Himalaya-Hengduan Mountains. plant diversity, 41(1), 26-32. 10. Hosseini, N., Ghorbanpour, M., Mostafavi, H. 2024. Habitat potential modelling and the effect of climate change on the current and future distribution of three Thymus species in Iran using MaxEnt. Scientific reports, 14(1), p.3641. 11. Ilunga Nguy, K., Shebitz, D. 2019. Characterizing the spatial distribution of Eragrostis Curvula (Weeping Lovegrass) in New Jersey (United States of America) using logistic regression. Environments, 6 (125): 1-14. 12. IPCC 2007. Climate Change 2007: synthesis report. Contribu-tion of working groups I, II and III to the fourth assessment report of the Inter governmental panel on climate change.IPCC Geneva. Journal of rangeland, 14 (3): 526-538. 13. Khanum, R., Mumtaz, A.S., Kumar, S. 2013. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta oecologica, 49: 23-31. 14. Latimer, A.M., Wu, S.S., Gelfand, A.E., Silander, J.A. 2006. Building statistical models to analyze species distributions. Ecological applications, 16: 33-50. 15. Pressey, R.L. Cabeza, M. Watts, M.E. Cowling, R.M., Wilson, K.A. 2007. Conservation planning in a changing world, Trends Ecol. Evol. 22(4): 583–592. 16. Rana, S.K., H.K. Rana., S.K. Ghimire., K.K. Shrestha., Ranjitkar, S. 2018. Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. Journal of mountain science, 14 (3): 558-570. 17. Ray, D.K., West, P.C., Clark, M., Gerber, J.S., Prishchepov, A.V., Chatterjee, S. 2019. Climate change has likely already affected global food production. PLoS ONE, 14(5), 1-18. 18. Sangoony, H., Vahabi, M.R., Tarkesh, M., Soltani, S. 2016. Range shift of Bromus tomentellus Boiss. as a reaction to climate change in Central Zagros, Iran. Applied ecology and environmental research, 14(4): 85-100. 19. Sarmento Cabral, J., Jeltsch, F., Thuiller, W., Higgins, S., Midgley, G.F., Rebelo, A.G., Rouget, M. 2012. Impacts of past habitat loss snd future climate change on the range dynamics of South African proteaceae. Diversity and distribution, 1-14. 20. Teimoori, S., Naghipoor, A., Ashrafzadeh, M.R., Heydarian, M. 2020. Predicting the impact of climate chnge of potential habitats of Stipa hohenackeriana Trin & Rupr. In central Zagros. Journal of rangeland, 3(14): 526-538. 21. Thuiller, W., 2007. Biodiversity: climate change and the ecologist. Nature, 448(7153): 550-552. 22. Tongli, W., Elizabeth, C. 2012. Projecting future distributions of ecosystem climate niches: Uncertainties and management applications. Forest Ecology and Management, 279: 128-140. 23. Yi, Y. J., Cheng, X., Yang. Z. F., Zhang. S. H. 2016. MaxEnt modelling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecological engineering, 92, 260-269. 24. Wang, L., Wang, W.J., Wu, Z., Du, H., Zong, S., Ma, S. 2019. Potential distribution shifts of plant species under climate change in Changbai mountains, China. forests, 10 (6), p.498. 25. Wouyou, H.G., Lokonon, B.E., Idohou, R., Zossou-Akete, A.G., Assogbadjo, A.E., Kakaï, R.G. 2022. Predicting the potential impacts of climate change on the endangered Caesalpinia bonduc (L.) Roxb in Benin (West Africa). Heliyon, 8(3). 26. Zwicke, M., Picon-Cochard, C., Morvan-Bertrand, A., Prud’homme, M.P., Volaire, F. 2015. What functional strategies drive drought survival and recovery of perennial species from upland grassland?. Annals of botany, 116(6), 1001-1015.
|