:: Volume 6, Issue 13 (3-2019) ::
PEC 2019, 6(13): 197-214 Back to browse issues page
Predicting the impact of climate change on the distribution of Pistacia atlantica in the Central Zagros
Ali Asghar Naghipour borj * , Maryam Haidarian-Aghakhani , Hamed Sangoony
Assistant Prof., Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord, I.R. Iran , aa_naghipour@yahoo.com
Abstract:   (4216 Views)
Predicting the potential distribution of plants in response to climate change is essential for their conservation and management. This study aimed at predicting the effect of climate change on the geographical distribution of Pistacia atlantica in Chaharmahal & Bakhtiari province in the central Zagros region. In this study, we used 19 Bioclimatic variables derived from rainfall and temperature and three physiographical variables as the input of maximum entropy model (MaxEnt). The results showed that annual precipitation, annual temperature range and seasonal temperature have played the most important role in habitat suitability of this species. The results of the model showed that 14.7%, (2413.7 km2) of in Chaharmahal and Bakhtiari Province for the Pistacia atlantica have had high habitat suitability. Under RCP4.5 and RCP8.5 climate scenarios, Pistacia atlantica might lose (Respectively 8.11% and 11%) of its climatically suitable habitats due to climate change factors by 2050. Considering the high accuracy of the maximum entropy model in predicting the distribution of the studied species (AUC = 0.92), results of this study can be used in planning, conservation and rehabilitation of Pistacia atlantica.
Keywords: Chaharmahal & Bakhtiari Province, Habitat Suitability, General Circulation Model, Species Distribution Modeling
Full-Text [PDF 2089 kb]   (932 Downloads)    
Type of Study: Research | Subject: Special
Received: 2017/10/7 | Accepted: 2018/03/14 | Published: 2019/05/3
References
1. Abolmaali, M.R., Tarkesh, M., Bashari, H. 2017. Maxent modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecological Informatics, 43: 116-123.
2. AL-Saghir, M.G. 2010. Phylogenetic analysis of the genus Pistacia L. (Anacardiaceae) based on morphological data. Asian Journal of Plant Sciences, 9(1): 28.
3. Booth, T.H., Nix, H.A., Busby, J.R., Hutchinson, M.F. 2014. BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Diversity and Distributions, 20(1):1-9.
4. Cardillo, M., Mace, G.M., Gittleman, J.L., Jones K.E., Bielby, J., Purvis A. 2008. The predictability of extinction: biological and external correlates of decline in mammals. Proceedings of the Royal Society of London B: Biological Sciences, 275(1641):1441-8.
5. Choudhury, M.R., Deb, P., Singha, H., Chakdar, B., Medhi, M. 2016. Predicting the probable distribution and threat of invasive Mimosa diplotricha Suavalle and Mikania micrantha Kunth in a protected tropical grassland. Ecological Engineering, 97: 23-31.
6. Davies, T.J., Purvis, A., Gittleman, J.L. 2009. Quaternary climate change and the geographic ranges of mammals. The American Naturalist, 174 (3): 297-307.
7. Elith, J., Leathwick, J.R. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual review of ecology, evolution, and systematics, 40: 677-697.
8. Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier S., Guisan, A., Hijmans, R.J., et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2): 129-151.
9. Farhoosh, R., Tavakoli, J., Khodaparast, M.H.H. 2008. Chemical composition and oxidative stability of kernel oils from two current subspecies of Pistacia atlantica in Iran. Journal of the American Oil Chemists' Society, 85(8): 723.
10. Fayyaz, P., Etemadi, E., Julaiee-Manesh, N., Zolfaghari, R. 2013. Sodium and potassium allocation under drought stress in Atlas mastic tree (Pistacia atlantica subsp. mutica). iForest-Biogeosciences and Forestry, 6(2): 90.
11. Franklin, J. 2010. Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge, UK.
12. Guisan, A., Thuiller, W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology letters, 8(9): 993-1009.
13. Guisan, A., Zimmermann, N.E. 2000. Predictive habitat distribution models in ecology. Ecological modelling, 135(2): 147-186.
14. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25: 1965-1978.
15. Hunnam, P. 2011. Conservation of biodiversity in the Central Zagros Landscape conservation zone: Mid-Term evaluation report. Government of the Islamic Republic of Iran, United Nations Development Programme, Global Environment Facility, Project No. PIMS 2278.
16. IPCC, 2014. Summary for Policymakers, In: Field CB et al. (eds.), Climate Change: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
17. Kozhoridze, G., Orlovsky, N., Orlovsky, L., Blumberg, D.G., Golan‐Goldhirsh, A. 2015. Geographic distribution and migration pathways of Pistacia–present, past and future. Ecography, 38(11): 1141-1154.
18. Lawler, J.J., White, D., Neilson, RP., Blaustein, A.R. 2006. Predicting climate‐induced range shifts: model differences and model reliability. Global Change Biology, 12 (8): 1568-84.
19. Linstädter, A., Zielhofer, C. 2010. Regional fire history shows abrupt responses of Mediterranean ecosystems to centennial-scale climate change (Olea–Pistacia woodlands, NE Morocco). Journal of Arid Environments, 74(1): 101-110.
20. Naghipour, A.A., Bashari, H., Khajeddin, S.J., Tahmasebi, P., Iravani, M. 2016. Effects of smoke, ash and heat shock on seed germination of seven species from Central Zagros rangelands in the semi-arid region of Iran. African Journal of Range & Forage Science, 33(1): 67-71.
21. Peterson, A.T. 2011. Ecological niches and geographic distributions (MPB-49) (No. 49). Princeton University Press.
22. Phillips, S.J., Anderson, R.P., Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3): 231-259.
23. Potter, K.M., Hargrove, W.W. 2013. Quantitative assessment of predicted climate change pressure on North American tree species. Mathematical and Computational Forestry & Natural-Resource Sciences (MCFNS), 5(2): 151-169.
24. Pourreza, M., Shaw, J.D., Zangeneh, H. 2008. Sustainability of wild pistachio (Pistacia atlantica Desf.) in Zagros forests, Iran. Forest Ecology and Management, 255(11): 3667-3671.
25. Pressey, R.L., Cabeza, M., Watts, M.E., Cowling, R.M., Wilson, K.A. 2007. Conservation planning in a changing world. Trends in ecology & evolution, 22(11): 583-592.
26. Rana, S.K., Rana, H.K., Ghimire, S.K., Shrestha, K.K., Ranjitkar, S. 2017. Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. Journal of Mountain Science, 14 (3): 558-570
27. Sinclair, S., White, M., Newell, G. 2010. How useful are species distribution models for managing biodiversity under future climates? Ecology and Society, 15 (1): 8.
28. Sutton, W.B., Barrett, K., Moody, A.T., Loftin, C.S., deMaynadier, P.G., Nanjappa, P. 2014. Predicted changes in climatic niche and climate refugia of conservation priority salamander species in the northeastern United States. Forests, 6 (1): 1-26.
29. Thuiller, W. 2007. Biodiversity: climate change and the ecologist. Nature, 448(7153): 550-552.
30. Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J., Fromentin, J-M., Hoegh-Guldberg, O., Bairlein, F. 2002. Ecological responses to recent climate change. Nature, 416(6879): 389-395.
31. Wang, W., Tang, X., Zhu, Q., Pan, K., Hu, Q., He, M., Li, J. 2014. Predicting the impacts of climate change on the potential distribution of major native non-food bioenergy plants in China. PloS one, 9(11): 1-11.
32. Warren, R., VanDerWal, J., Price, J., Welbergen, J.A., Atkinson, I., Ramirez-Villegas, J., Osborn, T.J., Jarvis, A., Shoo, L.P., Williams, S.E., Lowe, J., 2013. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nature Climate Change, 3: 678-682.


XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 6, Issue 13 (3-2019) Back to browse issues page