بررسی تأثیر شکل زمین و وزیگی‌های خاک بر صفات روش گونه تکریس (Rhamnus pallasi Fisch. & C. A. Mey.) در منطقه جنگلی کندیرق خلخل با استفاده از روش تجزیه مؤلفه‌های اصلی

یونس رستمی کیا، محمد فتاح

استادیار بیوشیمی، بخش تحقیقات جنگل‌ها و مرانج، مرکز تحقیقات و امورش کشاورزی و منابع طبیعی استان اردبیل، سازمان تحقیقات، امورش و تروریج کشاورزی، اردبیل.

استادیار بیوشیمی، موسسه تحقیقات جنگل‌ها و مرانج کشور، سازمان تحقیقات، امورش و تروریج کشاورزی، تهران، ایران.

تاریخ دریافت: 1398/6/23
تاریخ پذیرش: 1398/10/29

چکیده

یکی از گونه‌های برزش‌زدایی جنگلی کندیرق خلخل است. این بیوشیمی بیشتر بررسی ارتباط صفات روشی شامل ارتفاع کل، قطر بیشتر قطر نات، تعداد جفت و زادوست نام‌گذاری با برخی از خصوصیات خاک و شاخص‌های شکل زمین در جنگل کندیرق خلخل با استفاده از روش آنالیز مؤلفه‌های اصلی تجزیه شد. برای این منظور 48 نمونه مربوط به 36 صفحه مطابق 200 متر مربع در داخل و به مساحت 100 متر مربع در داخل سطح برنامه‌ریزی شده جغرافیایی (شمال، جنوب، شرق و غرب) تهیه و مشخصه‌های کمی و شاخص‌های کیفی و کیفیت گونه‌های اصلی ارتباط با مدل گونه ای در ارتفاع 320 تا 150 متر از سطح دریا متقابل بسته می‌شود. جستجو در روش گونه‌های اصلی (PCA) در فرم دامنه و عامل و دامنه ناحیه (474 اصله ناحیه در طبقه‌بندی) در فرم علیه پیش در فرم علیه گونه‌های اصلی در ارتفاع 276 تا 120 متر از سطح دریا یافت. در نهایت نتایج مفید و عالی از پوشش و رشد و دانه در جهت‌های جنوبی منطقه مورد بررسی قرار گرفته است. نتایج این تحقیق می‌تواند در تشریح پیاده‌ریزی اکوسیستم و ایجاد اطلاعات حفاظتی و احیاپذیری از قبیل نهال کاری و سلاح تروریج جنگل‌های و تغییرات در فرم علیه دامنه و درهای مورد استفاده قرار گیرد.

younesrostamikia@gmail.com

نویسنده مسئول:

1
نرخه حفاظت زیست بوم گیاهان/ دوره هشتم، شماره هفتم، پاییز و زمستان ۱۳۹۹

رژه‌های کلیه‌ی تجزیه مؤلفه‌های اصلی، خلال، تنگوس، شرایط رویش‌گاهی، عامل‌های خاک، فیزیوگرافی.

مقدمه

جنگل‌های ایرانی-تورانی به لحاظ وسعت، مسئله‌ی زیست‌محیطی، توسه‌ی منابع آبی و حفاظت خاک از اهمیت خاصی برخوردار هستند. این جنگل‌ها در ده‌هها گیاه‌های بادی مانند گیاه‌های اجتماعی و عدم مدیریت جامع تا حد زیادی تخریب یافته‌اند و تنواز زیستگاه خود را ازدست داده‌اند که این روند آینده‌ای جنگل‌ها را به مخاطره می‌اندازد. بنابراین مطالعه و شناخت کافی از وضعیت این جنگل‌ها و پتانسیل‌های بالقوه و بالفورال آنها جهت بررسی‌ریزی مناسب ضروری است (عزیزی و همکاران، ۱۳۹۶). ترکیب و ساختار هر جامعه گیاهی تحت کنترل و تأثیر عوامل محیطی و رویش‌گاهی قرار دارد و در حقیقت این عوامل موجب استقرار انواع مختلف گونه‌های گیاهی در رویش‌گاه‌های مختلف می‌شوند. تغییر در عوامل محیطی مانند تغییرات اقلیمی، توزیع‌گرایی و خاک، پویاییی پوشش گیاهی را در یک منطقه دچار تغییرات اساسی می‌کند. از این‌جاكه به‌ترتیب نحوه مدیریت در عرصه‌ی طبیعی و بهبود منطقه جنگلی، برگرفتن از قوانین و مکانیسم‌های طبیعی خود این منطقه است (مروی‌مهاجر، ۱۳۸۰). با بررسی وضعیت موجود و کسب اطلاعات دقیق از رویش‌گاه‌های مورد مطالعه و نیازهای رویش‌گاهی گونه‌های جنگلی حاضر، می‌توان شیوه مناسب مدیریتی بر اساس اصول توسه‌ای بالا را تبعیض کرد (نامه طالبی، ۱۳۷۸).

جنگل‌های ایستان اردبی در سه ناحیه‌ی رویش خزری ارسجین و ایرانی-تورانی گسترش یافته است که بیشتری در مناطق جنگلی آن در ناحیه رویش ایرانی-تورانی و در منطقه خلال واقع شده است (رسمی کیا و ناب‌کاری، ۱۳۹۰). از مهم‌ترین گونه‌های درختی و درختچه‌ای این منطقه می‌توان به Pistacia atlantica Desf. subsp mutica, Junipers excelsa M. Beib, برس (Acer monspessulanum L.), کیکم (F. M. Parker), نامدهاک (Amigdalis lycioides) و Paliurus spina- christii Mill., زیتون (Lonicera iberica M.B.), انگور (Cotoneaster nummularia F&M), زرخشک (Berberis integerrima Bge.), زردآلو (Calotheca persica. Boiss.) و دغدغک (Colutea persica Desf.) اشاره کرد. (رسمی کیا و زبری، ۱۳۹۱).

تنگوسازی، از شاخص‌ترین درختچه‌های ناحیه رویش ایرانی-تورانی است و گسترش لین‌گونه در جنگل‌های خشک به‌کرک دامنه‌های صخره‌ای و شکاف سنگی‌ها و دریابار دیده می‌شود و هم‌راث با گونه‌های افندیا Pistacia (Cotoneaster nummulariodioides) و شیرخشک (Ephedra distachya) و اطراف Thymus fedtschenkoi (atlantica sub sp. Mutica) (أبیوان، ۱۳۹۲).
روبی خش و همکاران (1391) نیز نشان دادند روش‌های تنگبیک ارس- تنگرس با گونه‌های غلاب Polycephalum Tanacetum و گونه غلاب زیربوکس Rhannus palatius و Juniperus excelsa با خاک کم‌عمق و بی‌پرده‌ی سنگی زیاد و با ماده آلی و ظرفیت رطوبتی اندک عمده‌تر بر دامنه‌ی جنوبی و در ارتفاع 2300 تا 2400 متر از سطح دریا روش دارند. بررسی خصوصیات خاکشناسی مؤثر بر پراکنش گونه‌زایانگی در گنج‌های کرم‌پوش با استفاده از نشان داد که تنگرس گونه فقط به اسیدنیه خاک (Principal Component Analysis) آنالیز گردیده و در شمال مرکزی نشان می‌دهد و در خاک‌های با اسیدنیه کمی بالاتر از چندی حضور دارد (خان حسنی و همکاران 1392).

نتایج بررسی آتشفشانی گونه کیپک (Acer monspessulanum sub sp cinerascens) در گنج‌های فارس نشان داد که افزایش و تراکم درخت‌های اکرم و کیپک در ارتفاعات فوقانی بیشتر از CCA (Canonical Correspondence Analysis) نشان داد، شکل‌های تندتر و دامنه‌ی ارتفاعی در مناطق با درصد اشباع آب، هدایت الکتریکی، پروتئین‌های کلولی و رس بیشتر و شکل‌های تندتر و دامنه‌ی ارتفاعی در مناطق با درصد اشباع آب، هدایت الکتریکی، پروتئین‌های کلولی و رس بیشتر و

Lonicera نادی و همکاران (1396) در تحقيقات برخی عوامل مؤثر بر پراکنش گونه شن (Lonicera nummulariafolia) توصیف کردند. نتایج آنالیزهای چندمتغیره نشان داد که تنگرس گونه با درصد مواد آلی، ارتفاع از سطح دریا و چسب سازنگی آرامی راه‌پیمایی طبیعی و با درصد آهک‌خاک، هدایت الکتریکی دردسر رس و سیلت را به رعیتی‌های بیشتری دارد.

با توجه اینکه درخت‌چهار در بوم‌سازگان گنج‌های بدلیل مقاومت در برابر حضور محتوای سرمای زمستان و خشکسالی در ارتفاعات توده‌های جنگلی تخریب‌پذیری نشان می‌دهد (پوریابایی و همکاران 1393). از طرفی درخت‌چهار تنگرس از مهم‌ترین گونه‌های جنگلی ناشی می‌گردد تا ناحیه روشی ایران. توانایی استفاده به درجه‌ی بالاتر از تجزیه مؤلفه‌های اصلی و ارائه راهکارهای مناسب به منظور اجرای برنامه‌های احیاء و توسعه گنج‌های تخریب‌پذیر به‌هشته‌های شد.
مواد و روش‌ها

منطقه مورد مطالعه
پژوهش حاضر در دوره‌ی گیاهشناسی کندریق در ۲۵ کیلومتری جنوب غربی شهرستان خلخال انجام شد. چهار قرم جنگل، درختچه‌زار، بوته‌زار و علفزار در منطقه قابل نفکش انتخاب شدند. موضعیت مکانی دریافتگاه (Juniperus excelsa) به عنوان یکی از میوه‌های تناوبی انتخاب و اقلیمی روشگاه مورد مطالعه در جدول ۱ آراشده است. ارس (Acer), کیکوم (Pistacia atlantica Desf. subsp mutica F.& M.), ایمیگدالوس (Amygdalus lycioides Spach), بادامک (Cotoneaster nummularia F&M), چشمشک (Berberis integerrima Mill) و پالیوروس (Paliurus spinosus- christii Mill) (Taheri Abkenar et al., 2013) از گونه‌های همراه ترگس در منطقه جنگلی است.

جدول ۱ - مشخصات جغرافیایی، پستی و بلندی و آب و هوای روشگاه مورد مطالعه تگرس در منطقه کندریق خلخال

<table>
<thead>
<tr>
<th>طول عرض محدوده رویشی</th>
<th>محدوده ناحیه</th>
<th>طول سالانه</th>
<th>میانگین بارندگی</th>
<th>میانگین دمای سالانه</th>
<th>(درج به سانتی‌متر)</th>
<th>دمای متوسط سالانه</th>
<th>نسبت توده خشکت سرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۷.۲۷-۳۸.۹۸</td>
<td>۱۲۹.۲-۱۳۳.۷</td>
<td>۰-۶</td>
<td>۲۴-۳۲</td>
<td>۱۲۵۰</td>
<td>۱۲۵۰</td>
<td>۱۲۵۰</td>
<td>۳۵۰۰</td>
</tr>
</tbody>
</table>

مرغی گونه تگرس
تنگری به‌شکلی درختچه‌ای با ارتفاع ۲ تا ۴ متر با انشاره‌ای بهمراه‌های شاخه‌های خار مانند و سخت و برگ‌های کپک‌دار و کشیده با حاشیه‌ای خال و نازک (نابینای ۱۳۲۳) سطح برگ‌های نازک رنگ‌های آنتوسیانزه که از رنگ قهوه‌ای خار می‌شوند (هیلی‌پون و همکاران ۱۳۳۴) گل‌ها کیتی و میوه سطه‌ای گوشته سیاه‌رنگ‌وز تخم‌مرغی به‌طول ۶ میلی‌متر که پس از خشک شدن به رنگ قهوه‌ای درمی‌آید. (نابینای ۱۳۲۳، مظفری‌نیا ۱۳۳۴) این گونه در منطقه ایران معمولاً در مناطق استوی و نیمه‌اندیسی پدید می‌آید و این گونه‌ها به‌طور مداوم در منطقه ایران می‌توانند پدید می‌آیند. (Taheri Abkenar et al., ۱۳۹۲،۱۳۹۳)

روش تحقیق
پس از چنگل گردشی، روش‌گاه‌های عمدتاً تگرس (Rhamnus pallasii Fisch. & C. A. Mey.) در منطقه با توجه به شکل‌های مختلف زمین؛ جهت‌های جغرافیایی و پراکنش آن گونه از ارتفاع ۱۰۰ تا ۲۵۰ متر از سطح دریا تعیین شد. با توجه به تراکم چنگل، سطح قطعه‌نمونه طوری
در نظر گرفتن شد که در هر قطعه نمونه، گونه موردنظر بهصورت اجتماعی (دسته‌ای یا گروه‌کوچک) حضور داشته باشد. تعداد قطعه نمونه نیز در حالت جزئی فرم زمین (بالا، در و دامنه) و چهار جهت اصلی (شمالی، جنوبی، شرقی و غربی) تعیین شد. به‌طور ترتیب، 48 قطعه نمونه با مساحت 400 متر مربع به‌صورت مربع و در محل حضور تنگرک نوعی مشخصات عمومی آن‌ها شامل شد. جهت ارتفاع از سطح دریا و گونه‌های همراه تنگرک در داخل قطعات نمونه بردآوری شد. در هر قطعه نمونه عامل کمی از قبیل تعداد، قطره و قطره تنگرک، تعداد جست در هر جست گروه و تعداد زادآوری درخت‌های تنگرک اندازه‌گیری شد. به‌منظور مقایسه خصوصیات خاک در فرم‌های مختلف زمین و ارتباط آن‌ها با خصوصیات روانی تنگرک، نمونه‌ها خاک از عمق ۰ تا ۲۰ سانتی‌متری (با توجه به عمق خاک و ریشه دوایی گونه موردنظر) به‌طور همیشه مانند شد و به آزمایشگاه انتقال یافته، بنابراین کل خاک با روش کمکی اسیدریابی (هیدروپاتسیم) با مساحت ۱۳۷۱ کربنات کلسیم با روش کلسیم‌سولفات و بافت خاک به‌روش هیدروپاتسیم تعیین شد (زیرین کش، ۱۳۷۱).

تجزیه تحلیل آماری

تجزیه و تحلیل آماری داده‌ها با استفاده از نرم‌افزار SPSS نسخه ۱۷ انجام شد. ابتدا شرط نرمال بودن داده‌ها با آزمون کولموگروف-اضریترف و همگنی واریانس داده‌ها بوسیله آزمون لون انجام شد. سپس برای بررسی وجود ارتباط معنی‌دار مشخصه‌های رویشی و شاخص شکل زمین از آزمون هیبسنتی پیرسون استفاده شد. همچنین آزمون تجزیه واریانس داده‌ها برای بررسی وجود و عدم وجود رابطه معنی‌دار بین مقادیر گمی شاخص شکل زمین و مشخصه‌های رویشی تنگرک استفاده شد و مقادیر معنی‌دار داده‌ها با استفاده از آزمون حداکثر اختلاف معنی‌دار (LSD) در سطح آماره نپ درصد انجام شد. در این پژوهش برای تجزیه و تحلیل آماری، مشخصه‌های توصیفی شکل زمین مانند Sefidi et al. (2016) در هم‌دامنه و بالا با محاسبه شاخص شکل زمین به‌معنی‌دار کمی تبدیل شدند. در مرکز حر قطعه نمونه، سه‌ضلعی در جهت‌های اصلی به‌وسیله شبیه‌سنج سونتو قرانت شد و بعد با استفاده از رابطه یک شاخص شکل زمین محاسبه شد (Sefidi et al., 2016).

\[
\text{LI} = \frac{\text{SI}}{\text{n}^{0.5}}
\]

رابطه ۱

شاخص شکل زمین: LI

تعداد جهت‌های خواننده: n

شیب خط افقی: SI

جفت‌چهای مقدار داده شاخص در یک شکل زمین بیشتر باشند، نشان از پرشبی بودن و نزدیکی شکل زمین به دامنه‌های پرشبی دارد. در حالی که مقدار عدیدی شاخص در اشکال نسبتاً مسطح از زمین مقدار
شکل ۱- نمودار جنبه‌های میانگین شاخص شکل‌زمین (درصد) در اشکال مختلف زمین. خط مرکز در هر جنبه نشان‌گر میانگین شاخص در آن شکل‌زمین است.
بررسی مشخصات رویشی تنگرس در ارتباط با فرم‌های زمین

نتایج آزمون همبستگی پیرسون بین شاخص شکل زمین و مشخصه‌های رویشی تنگرس نشان داد مشخصه‌های ارتفاع کل در جست گروه (0/152) و تعداد جست (0/2) بیشترین و قطعیه (0/2/52) کمترین همبستگی را با شاخص شکل زمین نشان می‌دهند (جدول ۲).

جدول ۲- نتایج آزمون همبستگی پیرسون بین شاخص شکل زمین و مشخصه‌های رویشی تنگرس

<table>
<thead>
<tr>
<th>قواعد گونه</th>
<th>لازم</th>
<th>تعداد جست</th>
<th>ارتفاع</th>
<th>قطعیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>(در قطعیه)</td>
<td>(سانتی متر)</td>
<td>(متر)</td>
<td>(متر)</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0/152</td>
<td>0/2/52</td>
<td>0/21</td>
<td>0/101</td>
</tr>
<tr>
<td>β</td>
<td>0/152</td>
<td>0/2/52</td>
<td>0/21</td>
<td>0/101</td>
</tr>
<tr>
<td>r</td>
<td>0/152</td>
<td>0/2/52</td>
<td>0/21</td>
<td>0/101</td>
</tr>
<tr>
<td>p</td>
<td>0/152</td>
<td>0/2/52</td>
<td>0/21</td>
<td>0/101</td>
</tr>
</tbody>
</table>

** معنی‌دار در سطح خطای یک درصد. **معنی‌دار در سطح خطای پنجم درصد.

مشخصه‌های رویشی تنگرس در رابطه با شاخص شکل زمین

برای دستیابی به اثر شاخص‌های کمی شکل زمین بر مشخصه‌های رویشی، تجزیه واریانس داده‌ها انجام شد. نتایج نشان داد که اثر شاخص شکل زمین بر مشخصه تعداد جست در هر جست گروه در سطح یک درصد و مشخصه‌های ارتفاع، قطعیه، قطر تاج و تعداد زادآوری در سطح پنجم درصد معنی‌دار است (جدول ۳).

جدول ۳- نتایج تجزیه واریانس اثر شاخص شکل زمین بر مشخصه‌های رویشی تنگرس

<table>
<thead>
<tr>
<th>مقایسه‌های مربوطات</th>
<th>شاخص</th>
<th>درجه آزادی</th>
<th>تعداد زادآوری</th>
<th>ارتفاع</th>
<th>قطعیه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8/67</td>
<td>15/45</td>
<td>3/0/5</td>
<td>8/89</td>
<td>5/14</td>
</tr>
<tr>
<td>انتساب آزمایشی</td>
<td>2/18</td>
<td>2/18</td>
<td>1/0/9</td>
<td>1/4/6</td>
<td>2/18</td>
</tr>
</tbody>
</table>

** معنی‌دار در سطح خطای یک درصد. **معنی‌دار در سطح خطای پنجم درصد.
همچنین نتایج مقایسه میانگین‌ها نشان داد بیشترین درصد فراوانی درخت‌های تنگرکس از نظر مشخصه شکل زمین و جهت‌های جغرافیایی به ترتیب در فرم در و جهت‌های جنبی‌گرهای شد (شکل‌های ۲ و ۳). مقایسه میانگین داده‌های مشخصه‌های کمی نشان داد بیشترین میانگین ارتفاع درختی ۱/۷۴ متر (قطر تاج (۱۷/۵۵ متر) و تعداد جست در هر جست‌گروه (۰/۲۰۰۱ و قطعیه (۵/۶۵۵ سانتی‌متر) در فرم دامنه‌های بست‌بندی‌اندازه (جدول ۴).

جدول ۴- مقایسه میانگین مشخصه‌های روشنی سایه تنگرکس در شکل‌های مختلف زمین

<table>
<thead>
<tr>
<th>شاخص شکل زمین</th>
<th>تعداد زادواری</th>
<th>تعداد جست (در هر جست‌گروه)</th>
<th>قطر تاج (سانتی‌متر)</th>
<th>ارتفاع (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>۷/۴۵±۰/۲۵</td>
<td>۱/۵۹±۰/۲۱</td>
<td>۰/۷۵±۰/۲۱</td>
<td>۱/۵۵±۰/۲۱</td>
</tr>
<tr>
<td>b</td>
<td>۸/۲۵±۰/۲۱</td>
<td>۱/۷۵±۰/۲۱</td>
<td>۰/۷۵±۰/۲۱</td>
<td>۱/۸۵±۰/۲۱</td>
</tr>
<tr>
<td>c</td>
<td>۷/۴۵±۰/۲۵</td>
<td>۱/۵۹±۰/۲۱</td>
<td>۰/۷۵±۰/۲۱</td>
<td>۱/۵۵±۰/۲۱</td>
</tr>
</tbody>
</table>

میانگین‌های دارای حرف مختلف در ستون نمودار نشان دهنده میانگین داده‌های در سطح پنج درصد از میانگین خطا‌های معیار.

شکل ۲- درصد فراوانی تنگرکس در شکل‌های مختلف زمین

8
شکل ۲- درصد فراوانی تنگرس در جهتهای جغرافیایی مختلف زمین

بررسی درصد آمیختگی گونه‌های همراه تنگرس در قطعات نمونه نشان داد گونه ارس با فراوانی ۲۱/۲ درصد. پسته‌نوشی (۲۳۷/۰ درصد)، کیکم (۱۶/۱۵ درصد)، بادام‌کوهی (۱۲/۴ درصد)، تنگرس (۱۳/۴ درصد) و دندانکهک (۳۷/۷ درصد) در قطعات نمونه حضور دارند (شکل ۵).
نشریه حفاظت زیست بوم گیاهان/ دوره هشتم، شماره هفدهم، پاییز و زمستان 1399

بررسی وضعیت خاک در رویشگاههای تنگرس

تجزیه و تحلیل خصوصیات خاک نشان داد بافت خاک در رویشگاههای تنگرس لویی تا لومی- رسمی است. در جدول 5 می‌توان این ویژگی‌های فیزیکی و شیمیایی خاک رویشگاههای لویی، سایر رویشگاههای مورد مطالعه برای فرم‌های مختلف میزان اثرشده است. بیشترین مقدار اسیدیت خاک با 8/1 هدايت الکتریکی با 2/1 دسی-زیمپس بر متر، درصد ارت با 1/15 درصد و گرین آئی با 1/25 درصد در قرم دامنه اندازه‌گیری شد (جدول 5).

جدول 5- خصوصیات فیزیکی و شیمیایی خاک در شکل‌های مختلف زمین

<table>
<thead>
<tr>
<th>روشگاه</th>
<th>درصد دامنه</th>
<th>درصد افت خاک</th>
<th>اسیدیت</th>
<th>هدایت الکتریکی</th>
<th>اینگال</th>
<th>(دسی-زیمپس بر</th>
<th>متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>لویی</td>
<td>14/3</td>
<td>2/10</td>
<td>2/11</td>
<td>0/1/6</td>
<td>0/2/1</td>
<td>2/0/9</td>
<td>1/0/5</td>
</tr>
<tr>
<td>لومی</td>
<td>16/5</td>
<td>2/35</td>
<td>0/1/5</td>
<td>7/4</td>
<td>2/3</td>
<td>2/0/6</td>
<td>2/43</td>
</tr>
<tr>
<td>دامنه</td>
<td>26/2</td>
<td>0/1/5</td>
<td>0/3/1</td>
<td>7/5</td>
<td>4/2</td>
<td>4/2</td>
<td>2/0/6</td>
</tr>
<tr>
<td>پال</td>
<td>26/0</td>
<td>1/14</td>
<td>0/8/1</td>
<td>2/8</td>
<td>3/4</td>
<td>4/1</td>
<td>2/32</td>
</tr>
</tbody>
</table>

10
برای تعیین ارتباط قطعات نمونه با خصوصیات فیزیکی و شیمیایی خاک، ابتدا روش آنالیز تطبیقی (PCA) بر روی متغیرهای مورد بررسی گونه مورد نظر، انجام شد و به دلیل کمتر بودن طول تغییرات (۸۸٪) و وجود ارتباط هکست کوتاه بین متغیرها، روش این پایگاههای اصلی (PCA) بر روی ۹ متغیرهای فیزیکی و شیمیایی خاک انجام شد (جدول ۶) براساس نتایج حاصل از تجزیه و تحلیل مؤلفه‌های اصلی بیشترین ضریب ارزش ویژه (Eigen value) ۰/۸۷۹ و ۰/۹۴۵ با (Eigen value) بیشترین درصد تجمعی واریانس با ۷۸/۸۲۷ و ۷۸/۸۲۴ درصد بهترین به محورهای اول و دوم اختصاصی افتته است. به همین دلیل تجزیه و تحلیل اطلاعات و محفظه قطعات نمونه و عامل‌های خاک نسبت به این دو محور سنجیده و مقایسه شد (جدول ۷).

جدول ۶- آنالیز تطبیقی فوس گیر (DCA) بر روی متغیرهای مورد بررسی گونه

<table>
<thead>
<tr>
<th>Kaisser- Guttman</th>
<th>معمار طول گرادیان</th>
<th>طول گرادیان</th>
<th>Dade</th>
<th>گرادیان</th>
<th>گرادیان</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braak</td>
<td>Leps & Smilauer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montgoharian کمی ۸۸٪</td>
<td>روش خطی</td>
<td>روش خطی</td>
<td>DCA</td>
<td>DCA</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۷- مقدار ویژه و درصد واریانس محورها در آنالیز PCA

<table>
<thead>
<tr>
<th>شاخص بروکن - استیک</th>
<th>درصد واریانس</th>
<th>درصد واریانس</th>
<th>محور</th>
<th>محور</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۳۱۲</td>
<td>۷۸/۸۲۸</td>
<td>۷۸/۸۲۴</td>
<td>۶/۲۷۹</td>
<td>۱</td>
</tr>
<tr>
<td>۰/۳۲۱</td>
<td>۷۹/۹۲۳</td>
<td>۷۹/۹۳۲</td>
<td>۰/۹۴۵</td>
<td>۲</td>
</tr>
<tr>
<td>۰/۳۲۳</td>
<td>۹۰/۸۲۸</td>
<td>۹۰/۸۲۱</td>
<td>۰/۸۵۱</td>
<td>۳</td>
</tr>
<tr>
<td>۰/۳۷۳</td>
<td>۹۹/۸۶۹</td>
<td>۹۹/۸۶۴</td>
<td>۰/۸۸۱</td>
<td>۴</td>
</tr>
<tr>
<td>۰/۳۷۲</td>
<td>۹۹/۸۶۴</td>
<td>۹۹/۸۶۱</td>
<td>۰/۸۸۱</td>
<td>۵</td>
</tr>
<tr>
<td>۰/۳۷۳</td>
<td>۹۹/۸۶۴</td>
<td>۹۹/۸۶۱</td>
<td>۰/۸۸۱</td>
<td>۶</td>
</tr>
<tr>
<td>۰/۳۷۲</td>
<td>۹۹/۸۶۴</td>
<td>۹۹/۸۶۱</td>
<td>۰/۸۸۱</td>
<td>۷</td>
</tr>
</tbody>
</table>

شکل ۵ محفظه قطعات نمونه مورد بررسی عامل‌های خاک و ارتباط آنها با محور اول و دوم نشان می‌دهد. نتایج این آزمون نشان می‌دهد درصد شن، درصد کربنات کلسیم و اسیدیتga با سمت مشت ۱۱
نشریه حفاظت زیست روز گیاهان/ دوره هشتم، شماره هفدهم، پاییز و زمستان ۱۳۹۹

محور اول و دوم درصد اشباع، هدایت الکتریکی و درصد ارت با سمت منفی محور اول و دوم بیشترین همیسیگی را دارند. بیشترین تأثیر منفی را در صد اشباع و بیشترین تأثیر مثبت را در صد کربنات-کلسیم با محور اول داشته‌اند همچنین درصد شن بیشترین تأثیر مثبت و درصد رس بیشترین تأثیر
منفی را با محور دوم نشان می‌دهد (شکل ۵). قطعه‌نمودهای ۱۶، ۱۲، ۲۷، ۱۸، ۱۷، ۲۶ و ۱۱ رویشگاه‌های
های بال (بیشترین در جهت‌های جنوبی و غربی) نزدیکی بیشتری به سمت محور اول دارد و با
درصد آهک‌کل و اسیده‌های همیسیگی نشان می‌دهند. قطعه‌نمودهای ۱۶، ۱۲، ۲۷ و ۴۴ رویشگاه‌های
در دارای (بیشتری شمالي و شرقی) با سمت منفی محور اول بیشترین همیسیگی را دارند و با مقدار
درصد اشباع و هدایت الکتریکی ارتباط نشان می‌دهند. قطعات نمودهای ۱۳۱۶، ۱۲، ۲۷ و ۴۴
رویشگاه‌های دامنه‌ای در سمت مثبت محور دوم قرار دارند و با مقدار درصد مواد آلی ازت و سیلت
همیسیگی بیشتری نشان می‌دهند. قطعات نمودهای ۱۲، ۲۷ و ۴۴ گوی خاصی را نشان نمی‌دهند و در
قسمت‌های مختلف نمودار پراکنده شده‌اند (شکل ۵).

شکل ۵- موقعیت و مقدار همیسیگی قطعات نموده با عناصر خاک نسبت به محورهای اول و دوم

۱۲
بحث و نتیجه‌گیری

شکل زمین (پال، دانه و دره) در گسترش و رشد درختان نقش مهمی دارد. این پژوهش، گونه تنگرس اغلب بهصورت افرادی و یا در گروه‌های کوچکی در فرم‌های مختلف زمین و جهات مختلف جغرافیایی پراکنده‌است. در واقع، این گونه در فرم‌های پال، دانه و دره در مناطق مختلف همراه با شرایط محیطی یکی از رشد گونه تنگرس در این مناطق است و کاملاً نکته به‌کار می‌برد. با این حال، اگر نیاز به شرایط محیطی است، به‌طورکلی کم‌تر از سایر گونه‌ها را در مناطق دامنه‌ای دارد. در برخی موارد، سایر نوع‌های گونه نیز آب و هوای مناسب‌تری را دارند که می‌توانند به‌طورکلی استفاده کنند.

روش دانشگاه تیپک یرس- تنگرس با گونه‌های غالب با کمیابه و پیش‌درگی polyccephalum Tanacetum (Desf. subsp mutica F.& M. Desfontaines) گونه‌های زباد و زبان‌داری و طرفیت‌های اندک عمده‌ای بر دامنه‌های جنوبی و در ارتفاع تا 3000 متر از سطح دریا روش دارند. تنگرس یکی از مهم‌ترین داروها در تپه‌های چنگال ارس- افره - بهن، سیاه‌لقو- بهن و بهن- بادام است که بر روی دامنه‌های با کم‌ترین قطب‌ها می‌تواند در شرایط مناسب محیطی (پالها) اما به‌دلیل کم بودن عمق خاک و دریافت نور و فضای کافی در شکل بیشتر در زیر رشد انسجامی و چهار دکه ایستد. این زمینه روان‌بخش و همکاران (1391) Rhamnus و Juniperus excelsa نشان دادن که روش‌های طبیعی، تحت نام Pistacia atlantica (Abkenar) تنگرس با گونه‌های غالب با خاک کمیابه و بی‌پوشندگی polycephalum Tanacetum (Desf. subsp mutica F.& M. Desfontaines) در پارک ملی خجیر محصول می‌شود. به‌طورکلی 13 درصد از گونه‌های منطقه‌ای مورد این تحقیق با ترسکی دانه به تعداد 1650 متر از سطح دریا همراه با این گونه روش درنده.

نتایج آزمون همبستگی بین شاخص شکل زمین و مشخصه‌های ویژه تنگرس نشان داد همه مشخصه‌های آن‌ها گیاهنشین به جز فشردیده، ارتباط معنی‌داری با فرم‌های زمین داشته و دانسته‌ها، این زمینه می‌تواند اثرگذار در شکل و نسبت‌های محیطی باشد. از این زمینه‌ها به‌دست داشتند، نتایج آزمون شاخص دانه در این است. در این شرایط به‌دلیل رشد این گونه با شاخص شکل زمین وجود ندارد.

13
جهت جغرافیایی نیز از عامل های مهم در استقرار گونه‌های گیاهی است بطوری که بر مقدار
آب در دشت‌سیر گیاه، درجه حرارت خاک و میزان تور درایافتی توسط گیاه تأثیر می‌گذارد
(Badano et al., 2005). در تحقیق حاضر، به‌پیش‌تری شرکت‌های روشی شیمیایی تعداد خرچه،
قطوریه قطعاتی‌ترین جهت، قطعات و تعداد جست در هر جست گروه در دانه‌های جنوبی اندازه‌گیری
شد. این مطلب نشان دهنده نور پرورش بودن این گونه است. در این زمینه ریچاردسون و همکاران
سرش رامننسی (Rhamnus) (Richardson et al., 2000)
دارد که هم در رویش گاه‌های بار (طقس‌خالی چنگال) و هم در داخل سالانه‌ای روس‌یار دارد. نتایج
شناسی داد مشخص‌های کمی یا گونه‌ای شکل لگنار ارتفاع ضریب تعداد جست در هر جست گروه و قطوریه
در قلم دامنه تیره است. در این زمینه شاید بتوان اندازه‌گیری در دامنه به دلیل
مطالعاتی بودن خاک، غنی‌ترین آیه‌ها و رقابت نوری در ارتفاع هستند و درختان مستقر در بالا
به‌دلیل کم‌مقیم بودن خاک و دریافت نور کافی رقابت نداشتند و در ارتفاع و قطعات گسترش کم‌هستند.

ارتفاع از سطح دریا، نیز یک دیگر از عوامل مهم در گسترش گونه‌های گیاهی است.
با افزایش یا کاهش ارتفاع، شاخص رویشگاههای بیشتری از گزینه‌های تغییر می‌کند و گیاهان با
Taheri Abkenar et al., (2001) توجه به نیاز آن‌ها به خود در قصد ارتفاع می‌گیرند. یکی از
 TObject به‌پیش‌تری شرکت‌های روشی شیمیایی تعداد خرچه، قطوریه قطعاتی‌ترین جهت، قطعات و تعداد جست در هر جست گروه در دانه‌های جنوبی اندازه‌گیری
شد. این مطلب نشان دهنده نور پرورش بودن این گونه است. در این زمینه ریچاردسون و همکاران
سرش رامننسی (Rhamnus) (Richardson et al., 2000)
دارد که هم در رویش گاه‌های بار (طقس‌خالی چنگال) و هم در داخل سالانه‌ای روس‌یار دارد. نتایج
شناسی داد مشخص‌های کمی یا گونه‌ای شکل لگنار ارتفاع ضریب تعداد جست در هر جست گروه و قطوریه
در قلم دامنه تیره است. در این زمینه شاید بتوان اندازه‌گیری در دامنه به دلیل
مطالعاتی بودن خاک، غنی‌ترین آیه‌ها و رقابت نوری در ارتفاع هستند و درختان مستقر در بالا
به‌دلیل کم‌مقیم بودن خاک و دریافت نور کافی رقابت نداشتند و در ارتفاع و قطعات گسترش کم‌هستند.

نتایج نشان داد تجربه حیات می‌تواند به دنبال مفرکت‌هایی باشد که در منطقه مورد بررسی ناجیز
است و تعداد زادآوری غیرجنسی به دلیل قدرت تولید بازی و جستجو زاید یزد گونه
درچاه‌های مانند ارتفاعات بایین دامنه‌ها، دردها و تکامل که خاک عصبی‌تر دارد، مشاهده می‌شود.
دلیل این اختلاف را می‌توان در وجود روطبه، ناحیه پوششی بوده و نیز به تأثیر اندک نور
خورشید و زیاد بودن عمق خاک در دره و سایه‌بردن بودن نورهای آن بیان کرد.

یکی از عوامل محتمل مهم در استقرار گونه، نوع خاک است که بین خصوصیات فیزیکی و
شیمیایی دارد. به توجه به تجزیه‌ی متغیرهای جهت انتخاب کردن بین خصوصیات
کمی تک‌درک، خصوصیات فیزیکی و شیمیایی خاک و عوامل توری وگرافی در رویش‌ها مورد مطالعه، ارتباط
وزیعی و وجود دارد. نتایج این تحقیق همچنین نشان داد حضور گونه مورد بررسی با درصد شن و سیلت
خاک هم‌گستری مثبت دراز. افزایش درصد شن سبب افزایش تخلخل خاک می‌شود و نفوذی‌پذیری زیاد و

14
پایداری خاک‌های شنی امکان نفوذ رطوبت به اعماق خاک را فراهم می‌کند و اب قابل دسترسی برای بافت‌شکن و مقدار مناسب در انتخاب گیاهان قرار می‌دهند. این امر بهترین بستر مناسب برای افزایش مقدار آب در خاک ایجاد می‌سازد. بنابراین می‌توان ادعای داشت که دامنه پراکنش گونه عنصر غذایی در منطقه، در خاک‌های با بالاتر شنی و لومی با تخلخل بالا و همچنین خاک‌های غنی از مواد آتی است.

نتایج این تحقیق نشان داد که پراکنش گونه تنگریس با درصد موادی و ارتفاع رابطه مستقیم و با درصد رس و درصد اشباع خاک و هدایت الکتریکی رابطه عکس دارد. بنابراین می‌توان گفت که حضور گونه تنگریس با افزایش درصد ماده آتی و ارتفاع کل که ازجمله شاخ‌های کیفی خاک است دارای رابطه مناسب است و این بهبود ویژگی‌های فیزیکی، شیمیایی و بیولوژیکی آن را بهمراه دارد.

به عبارت دیگر افزایش ماده آتی خاک به سبب طرفیت نیازهای بالینی که این ماده دارای عامل غذایی و ترکیبات آتی در خاک است که باعث افزایش طرفیت جذب و تنگریس عنصر غذایی را در خاک می‌شود (نادری و همکاران، 1396).

در نهایت می‌توان نتیجه گیری کرد بافت خاک بیوژه درصدشن و سپیدی درصد کربن آلی و درصد از شرایط مناسب‌تری را برای حضور و رشد رویشی گونه در فرم‌های دره و دامنه‌های جنوبی منطقه مورد بررسی قرار داده‌اند. نتایج این تحقیق می‌توانند در شرایط پایداری کوپاسیستم، اقدامات حفاظتی و بارز‌تری جنگل از قبیل نهال‌گری و اصلاح ساختار جنگل‌های تخریب‌شده در منطقه مورد مطالعه استفاده شود.

منابع

یابر، ج. 1378. جنگل‌ها، درخت‌های ایران، دانشگاه تهران، صفحه 815.

Sefidi, K., Sharari, M., Esfandiary Darabad, F., and Azarian, M. 2016. The role of physiography characteristics of forest site on distribution of coarse woody debris and tree species in a mixed beech (Fagus orientalis Lipsky) forests, northern Iran. Journal of Wood & Forest Science and Technology, 4 (23): 65-86.