رابطه بین برخی از ویژگی‌های رویشگاه باربیجه با خصوصیات خاک (مطالعه موردی: مرایع عطالیه و شهرود – خراسان رضوی)

چکیده

شناخت روابط بین گیاهان و عوامل محیطی در برنامه‌ریزی برای بهره‌برداری پایدار از اکوسیستم‌های خشک است. در این مطالعه روابط بین خصوصیات دمایی و نسبی، عناصر، قطعات و فاقدات خاک و رویشگاه گیاهی روشگاههای باربیجه در مرایع عطالیه و شهرود خراسان رضوی بررسی شد. از نمونه‌گیری از خاک و رویشگاه‌های باربیجه که شناسایی و با استفاده از یک روش نمونه‌گیری به‌کاررفته بودند، داده‌ها به روش تجزیه برای مقایسه اصل برای شناسایی منشی‌های با بیشترین تأثیر در واریانس کل ویژگی‌های خاک و رویشگاه گیاهی تجزیه و تحلیل شدند. نتایج تجزیه برای چندین ویژگی‌های خاک به‌کار رفته در این مطالعه اصلی به گونه‌ای بود که در بین ویژگی‌های خاک، ماده آلی، بکرین، نتریوزن، رطوبت اشباع و کاتیون‌های خاک

و در بین صفات پویش گیاهی تراکم تیونگ گونه‌های مقدار زیستن پویش گیاهی و مقادیر متفاوت‌های تایوتیه بیشتر، تراکم تیونگ گونه‌های مقدار زیستن پویش گیاهی و مقادیر متفاوت‌های تایوتیه بیشتر، تراکم تیونگ گونه‌های مقدار زیستن پویش گیاهی و مقادیر متفاوت‌های تایوتیه بیشتر

تأثیر را بر واریانس کل نشان می‌دارد. بررسی روابط بین اولین متفاوت کالیون پویش گیاهی و خاک نشان داد که 65 درصد از واریانس مشاهده شده در صفات اندام‌گیری شده پویش گیاهی به دلیل تغییر خاک است. مقادیر فاقدات آلی و رطوبت خاک با مقدار زیستن پویش گیاهی و تیونگ گونه‌های همبستگی منفی نشان می‌دهند. مقادیر کلسیم خاک با تیونگ گونه‌های و وزن خشک زیستن پویش گیاهی همبستگی منفی نشان می‌دهند. بر اساس نتایج حاصل از تجزیه‌های کالیون‌ها و خصوصیات خاک و پویش گیاهی در رویشگاه باربیجه به هم وابستگی و مقدار کلسیم و ماده آلی خاک از خصوصیات مهم‌ترین اثرات کارایی است. بررسی تجزیه همبستگی کالیون‌ها

gh.taheri @iau-neyshabur.ac.ir

*ایمیل نویسنده:

۲۳
نیاز به حفظت زیست بوم گیاهان/ دوره هفتم، شماره پانزدهم، پاییز و زمستان ۱۳۹۸

مقدمه

ابحاث مرنگ تغییرات محیطی در زاچه راهبردی و عوامل محیطی نیاز دار (Iwara et al., 2011; Ren et al., 2013; van der Maarel, 2005) از محیطی نیاز داره که مورد توجه اکولوژیست‌های گیاهی قرار گرفته است. در یک اقلیم مشخص، بوش گیاهی و خاک ارتباط ترکیبی با هم دارند و هرکدام می‌توانند بر دگرگان تأثیر داشته باشند (Iwara et al., 2011).)

جوانگ گیاهی به شدت به تغییر در ویژگی‌های خاک و کاشت نشان می‌دهند و این داده از روش استفاده در سنجش و سنجش‌های مختلفی مشابه رشد کند (Sanaullah et al., 2011). عوامل متعددی بر تغییرات خاک و بوش گیاهی تأثیر داشته و استقرار گونه‌های

گیاهی در یک منطقه تأثیرگذار است و بین خاک و بوش گیاهی نیز روابطی بسیار پیچیده و حساسیت زیست بوم گیاهان/ دوره هفتم، شماره پانزدهم، پاییز و زمستان ۱۳۹۸

متنی به تغییرات خاک و بوش گیاهی روابط خطي متعددی وجود دارد که برای تفسیر نتایج حاصل از تجزیه و تحلیل همسکنی و گردشگری مشکلات زیادی را به وجود می‌آورد. بنابراین این مشکلات را می‌توان با استفاده از تکنیک‌های تجزیه و تحلیل و تغییرات مختلف در محیط به کمک محاسبه ضرایب و تغییرات پیش‌بروی تغییرات مشاهده شده از مجموعیت همگام در واردات کل محاسبه نموده و تغییرات عواملی با میزان تأثیر

بر واریانس کل شناسایی شود (Silva & Batalha, 2008). تحقیق بر روی روی و روش گیاهی در شناسایی گیاهی در دو هما گسترش در مطالعه اکولوژیکی، چرخه‌ای و جغرافیایی و کارآمدی کل خاک با استفاده از روش چند متغیره انجام شده است. به عوامل تأثیر گسترش بوش گیاهی در منطقه (Iwara et al., 2011), بوش‌های گیاهی در منطقه

Javaheri Khan et al., (2011), مراتب منطقه نیمه خشک (Tang et al., 2015)، مراتب منطقه نیمه خشک (Iwara et al., 2011) و مراتب منطقه (کویری کیلانه و هواخی) ۱۳۹۵ انجام شده است.

نوشته برای (Ferula gummosa Boiss). در حالات چتری‌ها، از گونه‌های گیاهی مقام بزرگ یعنی خشک ایران است و از نظر جغرافیایی از مناسبات خاک، دارای دارویی و مصرف دارویی الیزاهای زیادی برای آن گزارش شده است (Sayyah & Mandgary, 2003). خشکسالی‌های یافتن و بهره‌برداری به‌روز و بهره‌برداری در صورت این گیاه در رویشگاه‌های طبیعی باعث بروز تهدیدات جدی برای حیات و بقای آن شده است و در بسیاری
فدر طاهري

از زیستگاه‌های طبیعی جمعیت آن به شدت کاهش یافته است (بیبگردا و همکاران، 1394، بیشتر مطالعات به بررسی ترکیبات شیمیایی و اثرات داروهای باریکه برداخته است (زیبی و همکاران، 1394). بشری و شاهمرادی (1382) در مطالعه آتکولوژی F. gummosa در کویستنیمای مرتعی استان قم به برفی و به‌گونه‌ای نیز شیمیایی و فیزیکی باریکه و ارتباط آن از سطح دریا برداخته و گزارش گردید. این گونه غیایی در خاک‌های با اسیدیت 1/7 و 8/7 و هدایت الکتریکی 0/023، دسیپیمس بر متر می‌روید. تأثیر عوامل آتکولوژیکی بر ویژگی‌های فیتوشیمیایی این گونه نیز مورد بررسی قرار گرفته است (ادنیو و همکاران، 1382). به طور کلی مطالعات آتکولوژی این گونه محدود بوده و به ویره درباره اثرات مقاومت باریکه و گیاهان همرنگ مقدار ترکیبات با اثرات آللوپاتیک آن و اطلاعات جنگلی، دسترسی نمی‌باشد.

به منظور ایجاد برنامه‌ریزی علمی جهت حفاظت و حمایت از باریکه و اصلاح و احیای زیستگاه‌های در محیط آبی، گزارش‌های علوم قدیمی و اجتماعی کلی داربودار بررسی و وضعیت آتکولوژی زیستگاه‌ها و پاسخ گونه به انتخاب دهنده و ضروری بوده است که در این تحقیق مورد توجه قرار گرفته است. هدف این تحقیق مطالعه بررسی روابط و هندسه بین خصوصیات خاک و پوشش گیاهی زیستگاه‌های باریکه، بررسی اثرات مقابلی متغیرها و نشان دادن اهمیت نسبی در کیفیت از متغیرها است.

مواد و روش‌ها

مکانی منطقه

رویشگاه باریکه در مناطق کوهستانی طالیانه و شورود به مساحت تقسیم ۶۵ هکتار در جنوب شرقی و "شمالی شرقی"، در ۳۸°۰۵ دقیقه، این خاک‌های کوهستانی باریکه و کوه‌مرخ و این منطقه دارای معمولاً خاک‌های کوهستانی باریکه سالانه ۲۸۴ میلی‌متر و میانگین دمای سالانه ۱۷ درجه سانتی‌گراد است. درمان بهینه و کمیته آن به ترتیب در ۲۷/۰ و ۲۷/۳ درجه سانتی‌گراد است. بر مبنای نقشه‌‌نگاره‌های پیشرفته در این منطقه ۵ ماه از آلیک و آب‌وهوای آن در گروه آلیک‌های نیمه‌خلوط سرد قرار می‌گیرد. رویشگاه مورد بررسی کوهستانی بوده و حداقل ارتفاع آن از سطح دریا به ترتیب ۳۸۰۰ و ۳۸۵۰ متر است. مطلق نقاط زمین‌شناسی سنگ‌نشانی سنگ‌نشت‌های رویشگاه‌های باریکه در این منطقه مانند است (قانی و حسینی، ۱۳۷۸).
نیوهای عمده پوشش گیاهی منطقه از گیاهان نیمه استوایی شامل جنگل هرقلابی و گیاه‌های گل‌دار، به نام‌های Juniperus Agropyron و Juniperus Spica-Centaurea Artemisia-Achanthophyllum Phlomis Poa bulbosa می‌باشند. از گونه‌های همراه با وفور بالا در روش‌های مواد مخالطه می‌توان به Eremurus Bupleurum exaltatum Melica persica Centaurea rigida cancellata اشاره کرد.

نمونه‌گیری: برای نمونه‌گیری از پوشش گیاهی گونه بارپیچه دو روشگاه در ارتفاعات جنوبي شهرستان می‌باشد. برای ثبت ورود به گونه ورود به منطقه معرف روی نقشه توبوگرافی: 1:20000 مشخص شد و با جغرافیایی محیط در روز نقض شده‌اند. از این محل‌ها به صورت تعادلی برای نمونه‌گیری از 44 نقطه نمونه استفاده شد. انداده قطعات برداشت نمونه به روش سطح حداکثر و با استفاده از روش پلئاهای حاکمی و محضی سطح گونه تعیین شد. به طور کلی انداده قطعه برداشت نمونه کمی بیشتر از سطح حداکثر و با اندازه 9 متراً چرخش گرفته شد. در هر قطعه برداشت خصوصیات مربوط به پوشش گیاهی و خاک انداده گیری شد.

اندازه‌گیری و پیگری‌های پوشش گیاهی: در قطعات برداشت نمونه شاخش تشابه بر مبنای ترکیب گونه‌ای به روش شاک و والکر (1901), مطالعه پوشش به روش براون بلانکه، شاخش نوع گونه‌ای به روش Shannon و Weiner (1964), مقدار وزن خشک زیست خود یهوره بارپیچه و پوشش گیاهی انداده گیری شد. برای انداده گیری وزن خشک در گیاهان چند ساله و چوپی فقط رشد سال جدید با برداشت بخش‌های ناز روی‌ریز و در گیاهان علفی‌نیز از یک سنتی‌متری سطح خاک برداشت گردید (Van der Maarel, 2005).

برای انجام مطالعات خاک‌شناسی، تعیین 3 نقطه خاک از هر قطعه نمونه و با استفاده از اکثریت‌های از عمق صفر تا 30 سانتی‌متر بهره برده شد و برای سنجش‌های مورد نظر از نمونه‌گیری شد. بافت‌های خاک به روش هیدروفیت شانز (1962), مقدار ماده کثیف Bremner & Mulvaney, (1934), مقدار نوتران خاک به روش جکسلد (Bray & Kurtz, 1982), مقدار فسفر خاک به روش رنتسنسنی (Nourbakhsh et al., 2003) و مقدار دی‌الی‌های اسیدی‌های تهیه شده به روش فیتیونومترا (Soil Survey Staff, 1984) استفاده شد. این‌ها به سیستم pH، با استفاده از pH متر و با نمونه‌های تهیه شده به نسبت 1:5 در آب خاک و هدایت الکتریکی با استفاده از دستگاه‌های سنج‌سنج الکتریکی، بر
روز عصاره اشتعال نمونه‌های خاک اندازه‌گیری شدند (Bremner & Mulvaney، 1982). مقدار رطوبت نقطه اشتباع خاک به روش استاندارد (Soil Survey Staff، 1984) اندازه‌گیری شد.

Ebrahimzadeh & Bahramian، 2009) و مقدار آلفاپتین اندام هواپی آن در بلوک‌کرمان‌گوگرهای اندازه‌گیری شد.

تجزیه دامنه

تجزیه به مؤلفه‌های اصلی با استفاده از نرم‌افزار SPSS نسخه 21 و رسم شکل 3.4، آماره معنی‌داری در ارتباط با رابطه عصاره و عصاره‌های اندازه‌گیری شد.

نتایج

تجزیه به مؤلفه‌های اصلی ویژگی‌های خاک: تجزیه به مؤلفه‌های اصلی بر روی 14 متغیر اندازه‌گیری شد. نمونه‌های خاک از 46 نقطه نمونه برای شناسایی عوامل خاکی مؤثر بر پوشش‌های گیاهی استفاده شد. بر اساس داده‌های چهار مهندسی، با مقادیر 378 درصد واریانس کل خاک و پوشش گیاهی نیز با استفاده از نرم‌افزار "PC-ORD" نسخه 4/100 نتایج کسب شد.
نشریه حفاظت زیست بوم گیاهان/ دوره هفتم، شماره پانزدهم، پاییز و زمستان ۱۳۹۸

دوم مقدار رس (۹/۴۲/۲۰۰ و مقدار سیلت (۹/۳۷/۲۰۰) بیشترین تأثیر را نشان دادند. این مولفه‌های ۹/۵/۲۰۰ درصد واریانس کل را داشت. مهم‌ترین عوامل اثر گذار در مولفه شماره سه مقدار نیترورون و مقدار فسفر و در مولفه چهارم مقدار سدیم و مقدار شن بود که به ترتیب بیان‌گر ۱۲/۳/۲۰۰ و ۹/۳۷/۲۰۰ درصد واریانس کل موجود در داده‌های خاک می‌باشد. به طور کلی، مهم‌ترین خصوصیات خاک موتور در گیاهی منطقه مورد بررسی مقدار کلسیم، پتاسیم، منیزیم و سدیم قابل تبدیل (بیانگر مقدار کاتیون‌های قابل تبادل خاک)، مقدار رس، سیلت و شن (بیانگر بافت خاک)، مقدار ماده آلی، مقدار نیترورون و فسفر (بیانگر وضعیت حالاتی خاک) و رطوبت نقطه اشباع خاک بود (شکل ۱).

توجه به مولفه‌های اصلی ویژگی‌های پویش گیاهی: تجزیه‌بندی مولفه‌های اصلی بر روش یک ویژگی مربوط به پویش گیاهی از ۴۶ قطعه نمونه به منظور شناسایی خصوصیات اصلی پویش‌های گیاهی مورد بررسی در ویژگی‌های خاک انجام شد (جدول ۲ و شکل ۲). بر اساس اطلاعات بدست آمده، دو مولفه بی‌پهنا و یک مولفه بررسی مدل تأثیر ۱ استخراج گردیده، این مولفه‌ها درصد واریانس کل موجود در داده‌های اولیه را نشان دادند.

جهان پارامتر از پویش‌های گیاهی با بیشترین تأثیر بر مولفه‌ای اول شامل تنوع گونه‌ها (۹/۸), مقدار زیستواد پویش‌های گیاهی (۷۷/۴۶), مقدار فنل کل (۸/۸۰)، مقدار آلفا پین، (۸/۸۰) بودند که حدود ۷۷/۱ درصد واریانس کل مشاهده شده را تبدیل کردند. تراکم گونه‌ها (۹۶/۲۰) بیشترین تأثیر را بر مولفه دوم بردید.

شکل ۱- مولفه‌های اصلی ویژگی‌های پویش گیاهی رویشگاه

شکل ۲- مولفه‌های اصلی ویژگی‌های خاکی رویشگاه

بازخوردها
نشان داد. این مولفه درصد ورایانس کل موجود را در گرفته و دارای مقادیر ویژه 1/18 بود. بر مبنای این نتایج، مقدار تغییرات وزن خشک یکی از ناحیه باریش در زیستگاه‌های مختلف تقیی دریافتی و نداشت. ناآرامی آن در اثر ورایانس کل ناجیز بود. ترکیبات فنل دارو و آلکلاین از متابولیت‌های ثانویه گیاهی نشان داد که این نتایج تحقیق آنها به عنوان مقدار متابولیت ثانویه در نظر گرفته می‌شوند.

تحلیل تطبیقی متعارف بر اساس نتایج حاصل از تجزیه و تحلیل مؤلفه‌های اصلی، همیستگی کانوی بین خصوصیات مربوط به خاک (5 متغیر) با ویژگی‌های مربوط به بوش کیفی (3 متغیر) روی کار گرفت. باریش محاسبه شد (جدول 3). داده‌ها بین‌گرا و 3 ضریب همیستگی کانوی (به ترتیب با ضارب

جدول 1- مراتب مولفه‌های خاک روی کار گرفته باریشه به روش ورایانس

<table>
<thead>
<tr>
<th>مولفه‌ها</th>
<th>متغیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار</td>
<td>(mg L<sup>-1</sup>)</td>
</tr>
<tr>
<td>رطوبت نفیسه اشکال (٪)</td>
<td>0/131</td>
</tr>
<tr>
<td>مقادیر وزه</td>
<td>6/07</td>
</tr>
<tr>
<td>درصد ورایانس</td>
<td>44/3</td>
</tr>
<tr>
<td>درصد تجمعی ورایانس</td>
<td>6/04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>سدیم</td>
<td>6/00-0/41</td>
<td>0/18-0/39</td>
<td>0/18-0/95</td>
</tr>
<tr>
<td>کلسیم</td>
<td>0/35-0/27</td>
<td>0/65-0/24</td>
<td>0/95-0/52</td>
</tr>
<tr>
<td>منیزیم</td>
<td>0/30-0/74</td>
<td>0/16-0/22</td>
<td>0/27-0/32</td>
</tr>
<tr>
<td>پتاسیم</td>
<td>0/14-0/22</td>
<td>0/16-0/38</td>
<td>0/27-0/32</td>
</tr>
<tr>
<td>فسفر</td>
<td>0/96-0/91</td>
<td>0/18-0/17</td>
<td>0/27-0/32</td>
</tr>
<tr>
<td>سولفات</td>
<td>0/45-0/53</td>
<td>0/17-0/19</td>
<td>0/27-0/32</td>
</tr>
<tr>
<td>ماکیا</td>
<td>0/11-0/195</td>
<td>0/18-0/32</td>
<td>0/27-0/32</td>
</tr>
<tr>
<td>اسیدنیت</td>
<td>0/14-0/24</td>
<td>0/18-0/37</td>
<td>0/27-0/32</td>
</tr>
<tr>
<td>هدایت الکتریکی (ds M<sup>-1</sup>)</td>
<td>0/381-0/444</td>
<td>0/347-0/5</td>
<td>0/27-0/32</td>
</tr>
</tbody>
</table>

(ینه/ ینه)
نشریه حفاظت زیست بوم گیاهان/دوره هفتم، شماره پانزدهم، پاییز و زمستان 1398

8/98، 71/2011 و 4/402) بین خاک و پوشش گیاهی بود. به دلیل تاثیر اندمازه نمونه بر مقدار همبستگی‌هایی کاتانوی محسوبی به شده، محققان معمولاً ضریب افزودگی را می‌بینند (Iwara et al., 2011). این ضریب مقدار دخالت واریانس مشاهده شده در یک دسته از متغیرها (متغیرهای خاک) بر مقدار واریانس مشاهده شده در متغیر دیگر (صفات پوشش گیاهی) را اندازه‌گیری می‌کند. بر اساس نتایج ارائه شده در جدول 2 ضریب افزودگی برای اولین متغیر کاتانوی خاک 0/64 است که نشان می‌دهد 64 درصد واریانس مشاهده شده در هر دوی متغیر اندمازه گیری شده پوشش گیاهی به دلیل تغییر در صفات اندمازه گیری شده خاک است. مقدار تغییر بین دوی متغیر می‌تواند به ترتیب 5 درصد و 2 درصد محاسبه شد. جدول 2- میانگین مؤلفه‌های پوشش گیاهی روش‌گاهی باریکه چرخش داماده به روش واریانس

| مؤلفه‌ها | متغیر | میانگین | تراکم (plant m⁻²⁻⁻
جدول ۳- نتایج تحلیل تطبیقی متغیرهای روابط گیاههای پوشش عمده

<table>
<thead>
<tr>
<th>متغیرهای کانونی</th>
<th>متغیر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>رس (ای)</td>
<td>۰/۲</td>
<td>۰/۲</td>
</tr>
<tr>
<td>میزان الی (g kg⁻¹)</td>
<td>۰/۹۶</td>
<td>۰/۹۶</td>
</tr>
<tr>
<td>نقطه اشتعال آب (ای)</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
</tr>
<tr>
<td>نیترژن (mg L⁻¹)</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
</tr>
<tr>
<td>الکسیم (mg L⁻¹)</td>
<td>۰/۹۲</td>
<td>۰/۹۲</td>
</tr>
<tr>
<td>ضریب آنژنیک</td>
<td>۰/۶۵۹</td>
<td>۰/۶۵۹</td>
</tr>
<tr>
<td>ضریب پوشنگی</td>
<td>۰/۹۵</td>
<td>۰/۹۵</td>
</tr>
<tr>
<td>بیوماس گیاهی (g m⁻²)</td>
<td>۰/۲۱</td>
<td>۰/۲۱</td>
</tr>
<tr>
<td>مقادیر فنل (mg g⁻¹ FW)</td>
<td>۰/۹۶</td>
<td>۰/۹۶</td>
</tr>
<tr>
<td>ضریب آنژنیک</td>
<td>۰/۶۴۲</td>
<td>۰/۶۴۲</td>
</tr>
<tr>
<td>ضریب همبستگی کانونی</td>
<td>۰/۹۵</td>
<td>۰/۹۵</td>
</tr>
<tr>
<td>مقادیر ویژه</td>
<td>۲/۲</td>
<td>۲/۲</td>
</tr>
</tbody>
</table>

گیاههای دارای ضرایباً بالای است. ضرایب کانونی بالاتر در ویژگی‌های بررسی شده گیاههای برای محور اول مقدار تیون گونه‌ای و مقدار متابولیت‌های تانوبه، برای محور دوم مقدار تیون گونه‌ای و برای محور سوم مقدار زیت تیون گیاههای است. این نتایج بیانگر آن است که در محور اول مقدار سه‌ای خاک، مقدار نیترژن و رطوبت نقطه اشتعال خاک دارای اثرات مثبت بر متغیرهای شاخص تیون و مقدار زیست توده گیاههای و اثر منفی بر مقدار فنل گیاههای بوی، علاوه بر این مقدار الکسیم خاک تا نیترژن بر صفتی بررسی شده گیاههای نیاز داد، در محور دوم مقدار نیترژن بر مقدار تیون گونه‌ای اندام‌گیری شده در زیستگاه بارجه اثر مثبت نیز داد.
جدول ۲- همبستگی بین خصوصیات خاک و بوشش گیاهی زیستگاه باریکه

<table>
<thead>
<tr>
<th>عناصر خاک</th>
<th>دانه‌ی بوشش گیاهی</th>
<th>مقادیر فنلی باریکه</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلیم</td>
<td>۰/۲۳</td>
<td>۰/۴۴</td>
</tr>
<tr>
<td>رس</td>
<td>۰/۵۹</td>
<td>۰/۷۹</td>
</tr>
<tr>
<td>مواد آلی</td>
<td>۰/۵۰</td>
<td>۰/۶۸</td>
</tr>
<tr>
<td>نیترژن</td>
<td>۰/۸۷</td>
<td>۰/۸۸</td>
</tr>
<tr>
<td>رطوبت</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
</tr>
</tbody>
</table>

پیشنهادهای استادی به کاربران اصلی و بین‌گیاههای خاک: پیشترین تغییرات اندازه‌گیری شده مربوط به مقادیر کانیون‌های قابل تبادل خاک (مقادیر کلسیم، منیزیم، پتاسیم)، مقادیر ماده آلی و رطوبت نقطه اشباع خاک بود. تغییرات مقادیر رس و سیلت در تریه دوم و سیلت مقادیر شن، نیترژن و فسفر در ورودی کل در رتبه سوم قرار داشت. هر چند مقادیر ترکیبات سولفاتی اسیدیت دیوت و همایی انتخابی خاک تغییراتی را نشان دادند ولی سهم آنها در ورودی کل صفات خاک اندازه بود (جدول ۱). از عوامل اصلی بررسی تغییرات فیزیکی و شیمیایی خاک بک منطقه با سنگ‌های مشابه تفاوت‌های میکروکلیماتی ناشی از تغییرات هیدروگرافیک، مقادیر آب خاک و تأثیر نوسان آب بر فعالیت عوامل فیزیکی، شیمیایی و بیولوژیکی مؤثر در خاک‌زایی، شستشوی کانیون‌ها و آلیون‌های خاک از مناطق مرتفع و رسو در آنها در پایین دست می‌باشد (Ekanade & Orimoogunje, 2012). مشاهده شده در بافت خاک قطعات نمونه‌برداری این تحقیق مطلوب دارد (میانگین داده‌ها ارائه شده این بافت همبستگی منفی با سنگ‌های خاک از منطقه مستقیماً در ریشه‌گاه مورد برشی است. تأثیر سنگ‌بستره بر مقادیر و نوع کانیون‌های خاک توسط منشأ گزارش شده است (وهرجربی و همکاران, ۱۳۹۳).

نتایج این تحقیق بانگر آن است که در خاک‌های با فاصله بسابکی، به دلیل تهیه سمپتور، مقادیر ماده آلی کمتر است و با نتایج گزارش شده توسط زهابیان و همکاران (Zehtabian et al., 2010) مطابقت دارد. تغییر در مقادیر ماده آلی خاک تحت تأثیر بافت آن گزارش شده است (Li et al., 2008)، ماده...
فیدر طالعی

آلی خاک علاوه بر توان جذب و تجزیه رطوبت بالا و تأثیر بر مقدار رطوبت نقطه اشباع خاک (گولیک کیانه و وهابی، ۱۳۹۱)، به دلیل داشتن بار الکتریکی منفی، ظرفیت تبادل یکاتونی خاک را افزایش می‌دهد. افزایش ظرفیت تبادل یکاتونی خاک می‌تواند به بهبود رشد گیاهان و افزایش مقدار لاش‌گیاهی و مقدار میوه آلی خاک منجر شود. رابطه مثبت بین مقدار یکاتونی‌های قابل تبادل Silva & Batalha، 2008; Ren et al., 2013) آمده است. اگر گزارش کردنگ که در خاک‌های سبزین به دلیل بیشتر اپ، میکانیک دمای خاک پایینی تر از خاک‌های شنی و سبک است، این سرعت واکنش‌های میکروبی تجزیه مواد آلی در خاک کاهش می‌یابد. مقدار رطوبت نقطه اشباع تحت تأثیر مواد آلی و بافت خاک تغییر می‌کند. محققان گزارش کرده‌اند که ذرات رسی و مواد آلی موجود در خاک به دلیل برخورداری از اندازه کوچک و سطح خارجی بسیار زیاد، امکان تشکیل فضاهای ریز بیشتری را دارند و از ظرفیت اشباع رطوبی بالاتری نسبت به ذرات سن و سیلیت برخوردارند (Lu et al., 2006). هر چند که رابطه منفی بین مقدار نیترورن و فسفر خاک در زیستگاه‌ها باربره قابل پیش‌بینی نیست ولی به نظر می‌رسد وجود قلیایی خاک بر قابلیت انتخل بالای فسفر و pH مقدار زیاد کربنات کلسیم و باریک آن شدیدان. علی‌رغم این که، سطحی بودن و وجود شیب‌های نسبتاً تند در محل روش گیاه، شناس شستشوی بیشتر مواد با قابلیت انتخل بالاتری از جمله نیترورن از آفا و فسفر داده است.

تجزیه به مؤلفه‌های اصلی ویژگی‌های پوشش گیاهی: بررسی داده‌های تجزیه به مؤلفه‌های اصلی ویژگی‌های پوشش گیاهی (جدول ۴) نشان داد که تغییرات تنوع گونه‌ای، تراکم، وزن زنده و مقدار متغیرهای نانومره پیش‌بینی از وسیع گیاه باربیکیه سطح پوشش گیاهان در هر قطعه نمونه به دلیل تغییر در تنوع اکولوژیکی (جدول ۱) و توان سازشی غیرمسکن باشد و سپس باعث تغییر در تنوع گونه‌های مختلف الهام بوده است. تغییر در ترکیب گونه‌های به دلیل افزایش متغیرت گونه‌های گیاهی لنت (Van der Maarel, 2005) نسبت به شرایط اکولوژیکی، نتایج قابل متفاوت آنها (Kent & Koker, 1992) گزارش کرده‌اند. تنوع گونه‌های بالاتر در یک زیستگاه امکان اشغال پیش‌بین آشیان‌های اکولوژیکی را فراهم نموده و به پیشرفت بیشتر از آن می‌تواند منجر می‌شود. یافته‌های تحقیق احتمال دارد که به طور کلی بین شایع تنوع گونه‌ها و مقدار زنده‌پوشش گیاهی ارتباط مثبت وجود دارد ولی رابطه آن با مقدار تولید منابعی باربیکیه (جدول ۷) بجز این روابط منابع با تغییرات اندازه سطح پوشش گیاهی و تغییرات شدید در تراکم گونه‌ها در هر قطعه برداشت همره بوده است. به عبارت بهتر تغییر تنوع گونه‌ها و روزانه روابط منفی بین گونه‌ها، مقدار زنده نیز نوسانات زیادی را نشان داده ولی سطح پوشش گیاهی دچار تغییرات

۳۳
نتایج حفاظت زننده بوم گیاهان/ دوره هفتم، شماره یازدهم، پاییز و زمستان ۱۳۹۸

اندکی شده است. کاهش در اندازه و تراکم گونه‌های گیاهی در شرایط بروز تنش‌های اکولوژیکی گزارش شده است (Eskelinen et al., 2009).

تهیه تطبیقی متفاوت: نتایج تجزیه‌داده‌های رویه بین برخی از وزن‌گزین‌های خاک و بوشگاه‌های گیاهی رویکردی به بررسی همبستگی‌های کانونی در جدول ۲ آن را شده است. داده‌ها بین‌گذر وجوه رابطه نزدیک‌کننده صفات خاک و بوشگاه‌های گیاهی در زیستگاه‌های بافندگی می‌باشند. همبستگی مشتاق بین نوع گونه‌های با مقدار کربن آلی خاک در این تحقیق (جدول ۳ و ۴) بیانگر است که مقدار آلی نقش کلیدی در اصلاح وزن‌گزین‌های خاک دارد و با تأثیر بر ظرفیت نگهداری آب خاک و افزایش حاصلخیزی Zehtabian ان قادرنده تا ظرفیت محیط را برای پذیرش تعدیل بیشتری گونه‌های گیاهی فراهم کند (Ghiassi et al., 2010). افزایش حاصلخیزی خاک به دلیل اثر حفاظتی گیاهان بر شستشوی مواد و پرگست منابع (Virtanen et al., 2006) داده‌های ناشی از تجزیه دقایق گیاهی است. گیاهان با حفاظت در آسم در برقراری رقابتی و افزایش مقیاس ماده آلی بر خاک تأثیر گذارند و وزن‌گزین‌های فیزیکی و شیمیایی خاک، امکان انعکاس فعالیت‌های حیاتی گیاه را تحت تأثیر خود قرار می‌دهند. تأثیر حاصلخیزی خاک ظرفیت تبادل کاتیونی، مقدار آب در دسترس و بافت خاک و چگونگی توزیع گونه‌ها و انگل زیستگاه گیاهان نوسی محققان (Momenni Moghaddam et al., 2012) میزان نژاد گیاهان نشان داد که رابطه بین نشریات وزن‌گزین‌های خاک و افزایش حاصلخیزی به عنوان گزارش در مرحله‌ای از نگرش‌های گیاهی بین نگه‌داشتن همبستگی گزارش شدند (Li et al., 2008). حدود ۴۶ درصد از نگرش‌های گیاهی تابع تغییر در عوامل خاکی و توده‌گرایی در هر چند که محققان تأثیر بافت بر تغییر گونه‌های در زیستگاه‌های گیاهی در نظام نسبت به لغیت نتایج این تحقیق نشان داد که رابطه بین نشریات وزن‌گزین‌های خاک و افزایش حاصلخیزی را بررسی کرده و نگه‌داشتند (Tang et al., 2015). روش‌های عملیابی بهترین مسیری که برخی از وزن‌گزین‌های خاک در ظرفیت بهتری برای خاکدام گزینه بافت خاک به در دسترس و مقدار مواد غذایی گزارش شده که بافت خاک بر ظرفیت نگهداری آب خاک، مقدار آب در دسترس و مقدار مواد غذایی مورد نیاز گذارکننده و روش‌هایی به بررسی در خاک‌های باربرخی و زیست‌سازی بیشتر تحت تأثیر ترکیبات سطح‌دار خاک (نرگاهی-کلاسیماس و سطح‌دار کلاسیم) بر رویت تغذیه و ایس گیاهان گزارش شده است (Ren et al., 2013).

مشاهده همبستگی منفی بین مقدار کلسیم و تغییر گونه‌های در این تحقیق (جدول ۳ و ۴) بیانگر ان
است که این کاتیون تأثیر منفی و بالایی بر چربیکی توزیع و استقرار گونه‌های گیاهی همراه با پریچر دارد. در مناطق بررسی شده داشت است. با توجه به مقادیر تکثیبات کلسیم‌دار در زیست‌گاه‌های مطالعه شده و تأثیر مثلث آن بر مقادیر تکثیبات منفی و کاهش تعداد گونه‌ها دلته بر آن دارد که از پریچر با انتخاب این زیست‌گاه‌ها نوان رقابتی خود را افزایش داده است.

رابطه میان توزیع گونه‌ها و مواد معدنی لاشه‌های سطحی خاک توسط محفظان گزارش شده است (Zhang et al., 2010). حتی تأثیر قرار می‌دهد توسط سیلیس و ویتامین (1391) گزارش شده است. مطالعه با گزارش Eni و همکاران (2012), نتایج این تحقیق نشان داد که مقادیر متقابل خاک عاملی کلسیم به ترتیب در زیست‌گاه‌های گیاهی است. هم‌مرجعی منفی بین نیتروروز و متابولیت‌های غیرآلاینگی باریزه در این تحقیق (جدول 4) نشان داد که این روش روش‌های گیاهان و تغییر سریع‌تر متابی امکان پذیر روابط آلیون‌پاتیک بین پریچر و گیاهان همراه آن در روش‌گاه وجود دارد. افزایش Momeni در جمع‌بندی گیاه‌های با محدودیت منابع توسط موسمی مقدار و همکاران (2012) گزارش شده است. رابطه دگرگان روی گیاهان به‌طور معمول در شرایط کمبود آب و بروز مشاهده می‌شود (Singh et al., 2006) و سایر این تحقیق نیز هم‌مرجعی منفی مقدار متابولیت‌های غیرآلاینجی را با مقادیر رطوبت خاک در گیاه باریزه نشان داد (جدول 3). رابطه منفی بین مقدار متابولیت‌های فلوئور (مقدار فلز و توان فلز) با توزیع گونه‌ها، تراکم و مقدار زیست‌گاه می‌تواند منبع شناسی و نقش در بیشتر از گونه‌های گیاهی در زیست‌گاه مستقر بوده و توزیع گونه‌های افراشکت می‌باشد (Wang et al., 2012). افزایش تعداد گونه‌های گیاهی در سطح سطحی مقدار آب و منابع غذایی موجود در خاک بر سرعت Li بیشتر کاهش مشاهده شده که تغییر تعداد گونه‌ها در سطح خاک می‌تواند به سبب تغییرات اندکی در سطح پوشش گیاهان شده است. افزایش روابط آلیون‌پاتیک و بروز رقابت بین گونه‌ها با محدود شدن منابع توسط محفظان گزارش شده است (Lu et al., 2006). رابطه آلیون‌پاتیک گیاهان خانواده چتریان با هم‌مرجعی جنس Ferula L. با تولید برخی متابولیت‌های غیرآلاینگی از جمله برخی مواد فنی و آلاینگی توسط محفظان گزارش شده است (Singh et al., 2006).

به طور کلی نتایج این تحقیق نشان داد که ویژگی‌های خاک و پوشش گیاهی به شدت به هم وابسته‌اند و مقدار ماده آلی خاک به دلیل تأثیر بر حاصلخیزی و رطوبت خاک به طرفیت نگهداری محیط و تندی
گونه‌های تأثیر بالایی دارد. علاوه بر این باریکه با انگلاب زیست‌گاه‌های با مقدار بیشتر ترکیبات کلسیم-دار از قدرت رقابت بالاتری برخوردار شده است.

منابع

ادنایی، س.م.، بشری، ح، باقری، ح، 1384. بررسی ویژگی‌های روش‌گاهی و برخی ترکیبات شیمیایی گیاه باریکه در استان قم، تحقیقات گیاهان دارویی و معطر ایران، 41(2): 211-215.

Stipa Artemisia sieberi بشری، ح، شاه‌مرادی، اع. 1383. آت اکولوژی سه گونه مربوطی در کویستس مربوطی استان قم، فصلنامه (Ferula gummosa Boiss. و hohenackeriana) پژوهشی تحقیقات مرئی و بیان ایران، 3(11): 7-38.

بیکرخواه، ز.، متنی، ف.، ناصری، ک.، راستگو، م، 1394. ارزیابی خصوصیات روش و تولید ریشه ذخیرونهای گیاه داروئی- صنعتی باریکه. (Ferula gummosa Boiss.) کشف در عرصه طبیعی و گلدا. نشریه پژوهش‌های زراعی ایران، 13 (1): 184-192.

زیینی، ز. همئی، خ.، ماندرازی، م، اصغری، ز.، 1394. آت اکولوژی، انویفاکاوولوزی، فیتوشیمی‌ای و بررسی اثر آنتی‌اکسیدانی عصاره اندام‌های مختلف گیاه داروئی باریکه (Ferula gummosa Boiss.) در دو روش‌گاه مختلف استان خراسان رضوی، فصلنامه اکوفیتوشیمی گیاهان دارویی، 4 (3): 22-111.

قانعی، ف. حسینی، ک.، 1378. تفسیر زمینشناسی نیش‌باغران مقباس 10000، سازمان زمین‌شناسی و اکتشافات معدنی کشور، چهارگوش شماره ۴ ایران.

گویلی کیلانه، ا. و هبی، م.، 1391. تأثیر برخی خصوصیات خاک بر پراکنش بخش گیاهی مرتع زاغرس مرکزی ایران. علوم فنون کشاورزی و مشابط طبیعی، علم آب‌و‌جک، 16(2): 255-268.

هرازچریبی، ا. نصرتی کازبرک، ف، عبدل‌نژاد، ک.، قدیمی، خ. 1392. بررسی آلکان پیشینی طرفیت نیش‌باغوان خاک با استفاده از پاتروش‌های زودیاکی‌ساز نشریه آب‌و‌جک (علوم و صنایع کشاورزی)، 27(4): 719-722.

Jaccard, P., 1901. Etude comparative de la distribution florale dans une portion des Alpes

Lu, T., Ma, K.M., Zhang, W.H., Fu, B.J. 2006. Differential responses of shrubs and herbs present at the upper Minjiang River basin (Tibetan

