بررسی ویژگی‌های ساختاری و عملکرد لکه‌های اکولوژیک مراتع در سطوح مختلف مدیریتی در پارک ملی کلستان

عبدالله جمینی۵، موسی اکبرلو۶، ماهد سپهروی۷، مصبور مصداقی۸، مصباح مؤمنی‌زاده۵

ادامه‌جویی بکری علوم مرتع، دانشگاه علوم کشاورزی و منابع طبیعی کرمان، کرمان
۵دانشجوی دکتری علوم مرتع، دانشگاه علوم کشاورزی و منابع طبیعی کرمان، کرمان
۶استاد گروه مرتع‌داری، دانشکده مرتع و ایجاد دام، دانشگاه علوم کشاورزی و منابع طبیعی کرمان، کرمان
۷استاد گروه مرتع‌داری، دانشکده محیط‌زیست، دانشگاه فردوسی مشهد
۸استاد دانشگاه تهران، دانشکده آموزش‌های زیست‌شناسی آب و جنگل، کرمان

تاریخ دریافت: ۱۳۸۶/۱۱/۱۲
تاریخ پذیرش: ۱۳۸۶/۱۱/۱۹

چکیده

جهت اعمال مدیریت علمی و صحیح بر آکوسیستم‌های مرتعی داشتیم اطلاعاتی از آن برای شاخص‌های سلامت و کارکرده مورد نظر ایت. بررسی آکوسیستم‌های مرتعی برای تغییرات حیاتی و مدیریتی برای بهبود دران یی نخی اکوسیستم‌ها را از نظر بایی برخوردار است. پارک ملی کلستان و مراتع اطراف آن تا توجه به نوع مدیریتی (انحلال) که بر انها اعمال می‌شود می‌تواند به لحاظ ساختاری و عملکردی کارکرده منافعی داشته باشد. از این رو، هدف از مطالعه حاضر بررسی خصوصیات ساختاری و عملکردی لکه‌های اکولوژیک مراتع در سه منطقه پارک ملی کلستان، منطقه حفاظتی شده قرخود و منطقه پیکانی است. مدتی بررسی با دستگاه‌های گاز شناسی و دستگاه‌های زیست‌شناسی را تا سه ماه سالیانه انجام می‌دهد. شاخص ساختمانهای اکسل، شاخص ساختمانهای رشد، شاخص ساختمانهای درآمد، رشد گیاهان، شاخص ساختمانهای درآمد رشد، شاخص ساختمانهای رشد درآمد و شاخص ساختمانهای رشد درآمد رشد

chamani40@yahoo.com

*نویسندگان مسئول: Chamani 40@yahoo.com

۲۳
نشان داد که اگر خصوصیات ساختاری (پیمانگی طول لکه، تعداد لکه، پیمانگی عرض لکه، سطح کل، شاخه سطح لکه و شاخه سازمان) در منطقه پارک می‌بینید از منطقه فرخود و اسپاواست. از نظر شاخه پایداری بین مناطق پارک می‌باشد. فرخود در سطح مناطق این اختلاف معنی‌داری وجود ندارد. شاخه‌های نتیجه‌برنده و چرخه موضوع غافل‌گیری در سطح پنج درصد اختلاف معنی‌داری باهم ندان داد. در منطقه پارک می‌باشد. فرخود بالاترین شاخه معمولی مربوط به قطعه اکولوژیک گشته (پس‌برگ علیه و در منطقه اسپاواست بالاترین شاخه معمولی مربوط به قطعه اکولوژیک به‌شمار می‌رود یا پس‌برگ علیه از خصوصیات معمولی و ساختاری می‌توان به‌عنوان هشدارهای آن‌ها برای تهیه تجربه مناسب و از این طریق اقدامات لازم جهت جلوگیری از شدت تغییر با پیش‌بینی ضرر اردش. تغییر کلیدی، خصوصیات ساختاری و عملکردی اکولوژیک، تحلیل عملکرد جهانی، مراجع: پارک می‌گستان مقدمه

جهت اعمال مدیریت علمی و صحیح بر اکوسیستم‌های مرجع، داشتن اطلاعاتی از اکوسیستم به‌عنوان شاخه‌های سلامت و کارکرد اکوسیستم مرزی‌بایست (کریمیان و همکاران، 1394). ارزیابی منظم سلامت و وضعیت اکوسیستم‌های مرزی در طول عکس‌العمل‌های محیطی و مدیریتی برای بهبود این منطقه تکرار اکوسیستم‌ها (دماداران و یا ساخائی‌های سیار) از همین نظر بالایی برخوردار است. یک نمونه از ارزیابی به‌عنوان احساس از اجتماعی مدیریتی جهت ارتقای کیفی آن اکوسیستم متنه خواهد شد (Pyke et al., 2002). ارزیابی تغییرات ویژگی‌های عملکردی مرزی که بر پایه فر ایندهای اولیه اکوسیستم نظر جرخه آب، جرخه عناصر و سیر انرژی است، مستلزم صرف وقت و هزینه زیادی می‌باشد (Pellant et al., 2005). با توجه به ضرورت مطالعه این ویژگی‌ها در مرزی، از شاخه‌های اکولوژیکی برای بررسی آن‌ها استفاده می‌گردد. این شاخه‌ها از جزئی اکوسیستم بوده و پرداختن و سیری و ازاران اندماگردنی می‌شوند (کریمیان و همکاران، 1395) ارزیابی عملکرد اکوسیستم‌ها از جهت دارای اهمیت است که علاوه بر نظر گرفتن چگونگی ساختار، موارد عملکردی و پایه‌ای (میزان نفوذپذیری، جرخه عناصر غذایی، سهولی) را نیز در نظر می‌گیرد.

برای پایش اکوسیستم مناطق خلیج و نیم‌خشک شاخه‌هایی مورد توجه هستند که این، قابل تکرار و حساس به تغییرات باندنش و پاندول تغییرات حالت از فعالیت‌های مدیریتی را نشان دهند (Tongway and Hindly, 2008). درک فرایندهای که منابع درونی سیستم اکولوژیکی و چشماندای را تنظیم می‌کند، گامی مهم در حفظ آن اکوسیستم به‌شمار می‌رود (کریمیان و همکاران، 1396). بنابراین روش‌هایی که پاندول تغییرات حالت از فعالیت‌های مدیریتی را نشان داده و در عین حال ساده و کم‌هزینه باشد بسیار سودمند می‌باشد. تاکنون روش‌های متعدد برای ارزیابی وضعیت سلامت و عملکرد اکوسیستم‌های مرزی ابتدای دهه است (Pyke et al., 2002).

1397
این روش‌ها، روش تحلیل عملکرد چشم‌انداز (LFA) است که به مثال‌های از نواژ گزارش‌های نوبه‌ندی می‌تواند به مدتی مرنمک کند. تاکیدی و گردی (2004، Tongway and Hindley) روی تجزیه و تحلیل عملکرد چشم‌انداز (LFA) را برای بررسی عملکرد اکوسیستم اثرات نوبه‌ندی این روش در روش‌هایهای مختلف کاربرد دارد و در این برای ارزیابی ۳ ویژگی عملکردی شامل پایداری خاک، تغذیه و نیز چرخه غذایی از ۱۱ شاخص سطح خاک استفاده شده است. صحت ارزیابی مراحل با این روش توسط محققین به کتابی ریزی است (تلفیقی‌ناری و حشمتی، ۲۰۰۴، Tongway and Hindley، ۲۰۰۴، ۲۰۰۹). ویژگی‌ها و شاخص‌های سطح خاک در این روش در واحد نمونه لکه بررسی می‌شوند. بسیاری از چشم‌اندازها به‌طور طبیعی در دلیلی که (جایی که منابع در آن تجمع می‌آید) و بین لکه‌ها (جایی که منابع به شکل آزادانه منتقل می‌شوند) هستند که منابع را به‌طور ناهماهنگ و غیرکنواخت انتخاب می‌کنند. Ludwig et al. (1999) منابع در آن تجمع می‌آیند و یا مابین لکه‌ها، سطحی که باشند که منابع از آن منسق شده‌اند. (Tongway and Hindley، ۱۹۹۵) هدف این طرح، ویژگی‌های گیاهی که لکه‌های اکولوژیکی مختلف را ایجاد می‌کنند در تحقیق این لکه‌ها در به et al. Kakembo et al. (2012) دام اندک در همه و به‌عنوان نحوه عملکرد اکوسیستم تأثیر دارد (Lozano ۲۰۱۳؛ بیانگان جلوی آب را یک‌در، هستند (2005، Miller). خصوصیات ساختمان لکه‌ها شامل ابعاد، تعداد و متوسط عرض قابل‌توجه آن‌ها روی زمین می‌بایست است. زیرا عامل تعیین کننده برای سرانجام روان‌ها و حرکت مواد رسوی و آلی است (Ludwig et al.، ۱۹۹۹). ساختار لکه‌های جوامع به‌طور مکرر موجب ایجاد اختلافات در سطح تولید و مهارت نکات که پس از آن‌ها اشکال جای نیاز و تغییر می‌شود (Gibson، ۱۹۸۸) این عدم تجایس نتیجتهایی از تغییرات ایجاد غیرشمار است، یکی می‌تواند ناشی از خود موجودات (فعال و غیرفعال) باشد. لکه‌های یوپنگی گیاهی و با لکه‌های اکولوژیکی از جمله پزشک و ماهی‌های اکولوژیکی شناخته می‌شوند در حالی که آرازی گیاهی براساس تحلیل گونه‌های مختلف به‌طور زیست‌محیطی متغیر می‌باشد (حشمتی، ۲۰۱۲). ساختار لکه‌های اکولوژیکی و یافته‌های این لکه‌ها در نواحی مختلف نسبت به تغییرات روانان و نیم‌خنشک بر رطوبت خاک اثر دارد که این امر خود تعیین کننده نرخ فرسایش نیز هست. کاهش لکه‌های اکولوژیکی متوجه به افزایش روندهای فرسایش در باران‌های نشدن شده و منجر به تخریب چشم‌انداز می‌گردد. فرآیندهای هیدرولوژیک یک اکوسیستم معمولاً نشان می‌دهد در توزیع مجدد منابع و تولید روانان و تغذیه‌های دارند که این فرآیندها خود منتظر از لکه‌های اکولوژیکی و یافته‌های این لکه‌ها است و از سوی دیگر درایی تأثیر مستقيم بر آن‌ها می‌باشد (تقدیمی، ۱۳۸۸، پست، ۲۰۰۵، طبی بررسی روی لکه گونه‌های علیفی ۲۵
نشریه حفاظت زیست

بازو، هر ۱۳۸۷

پارک ملی گلستان و موانع اطراف آن با توجه به نوع مدیریتی (حفاظتی) که بر آن‌ها اعمال می‌شود

می‌تواند به لحاظ ساختاری و عملکردی کارکرده‌ای منطقه‌ای داشته باشد. با توجه به این که هر اکوسیستم مرتعی از لگدهای اکولوژیکی گوناگونی تشکیل شده است که میزان عملکرد به‌کار رفتن یک یا چند مدل‌های نوین در اثر فعالیت‌های مدیریتی تغییر کرده و از این ویژگی‌ها می‌توان برای تفسیر شیوه‌های مدیریت استفاده کرد. لازم به ذکر

صحح و بهبود برداری پایداری یک اکوسیستم، شخصیت آگهی‌الاصلی آن، بررسی روابط بین آن‌ها و

شناسا تنها که اکوسیستمی است که این می‌مزج با کمک علم بوم‌شناسی امکان‌پذیر نیست. علم

بوم‌شناسی این امکان را فراهم می‌آورد که با نحوه و شناخت محیط بین تولید و بهبود بار گردان

منابع محیطی تعادل و توافقات برقرار کرد. از این رو، هدف از مطالعه حاضر بررسی خصوصیات ساختمانی و

عملکردی که‌های اکولوژیکی مرتع در سه منطقه پارک ملی گلستان، منطقه حفاظت‌شده فرخد و

منطقه بی‌پلاکی است. با انستاد

مواد و روش‌ها

مناظر مرتع مرتع

پارک ملی گلستان

پارک ملی گلستان با وسعتی برابر ۹۱۸۵۹ هکتار، منطقه‌ای است که به‌طور فضایی در شهر شرق ایران

که بین سه استان کرمانشاه، خراسان و سمنان قرار گرفته است. این منطقه در موقعیت جغرافیایی

۴۶° ۵۵ تا ۱۵° ۵۸ طول شرقی و ۱۸° ۳۳ تا ۲۲° ۳۷ عرض شمالی واقع شده است. اقلیم منطقه

۲۶

منطقه حفاظت‌شده مورد مطالعه قرخود

منطقه حفاظت‌شده قرخود در استان خراسان شمالی و در موقعیت جغرافیایی "۴۴°٥۵ تا ۵۰°۵۵" طول شرقی و "۲۳°۲۰ تا ۲۷°۵۱" عرض شمالی واقع شده است. منطقه حفاظت‌شده قرخود در استان خراسان شمالی شهرستان بانه و سفلقان و در حاشیه رشته‌کوه تکلان معروف به قرخود قرار گرفته و به علت واقع شدن در بخش پارک میلی گلستان از نظر بوم‌شناسی گیاهی و جانوری و داشتن شرایط زیستگاهی نادر در اراضی فراوانی است. اقیم منطقه براساس روش آمپرژه نیم‌خشک سرد است. متوسط دمای سالانه ۱۳ درجه سانتی گراد و میانگین بارندگی آن ۷۰ میلی‌متر Agropyron sp. Paliurus Stipa sp. Phalaris Festuca sp. Acer turcomanicum Juniperus sp. Carex stenophila Descraina و Artemisia sp. Pterocephra fraxinifolia spina- christi است (امیرخانی، 1384). نمونه‌برداری منطقه حفاظت‌شده قرخود در ارتفاع 1743 متری از سطح دریا، دامنه شرقی و موقعیت جغرافیایی "۴۴°۵۶ طول شرقی و ۵۷°۱۷ عرض شمالی صورت گرفت.

خصوصیات منطقه پیلایقی اسیاکو

این منطقه در جنوب منطقه حفاظت‌شده قرخود بین "۱۵۰ تا ۱۷۵" طول شرقی و "۲۰۲ تا ۲۳۲" عرض شمالی واقع شده است. اقیم منطقه براساس روش آمپرژه نیم‌خشک سرد است. متوسط دمای سالانه ۱۴/۵ درجه سانتی گراد و میانگین بارندگی سالانه ۲۴۸/۷ میلی‌متر Acer Astragalus sp می‌باشد (امیرخانی، 1387). گونه‌های گیاهی موجود در این منطقه Ferula gummosa Berberis vulgaris Artemisia Siberia Fraxinus sp. Isatium Salsola rigida و Gundelia tournefortii Atriplex hortensis
نشریه حفاظت زیست بوم گیاهان/ دوره ششم، شماره دوازدهم، بهار و تابستان 1397

شکل 1 - موقعیت مناطق مورد مطالعه

نموده‌برداری منطقه اسیاخو در ارتفاع 1683 متری از سطح دریا، دامنه شرقی و موقعیت جغرافیایی "24° 10' 27" و "20° 42' 6" طول شرقی و "27° 37' 27" عرض شمالی صورت گرفت.

روش مطالعه

در هر یک از مناطق مورد مطالعه با استفاده از سه عدده تا 50 متری در دامنه‌های شرقی انجام شد (حشمتی و همکاران، 1387). استقرار ترانسکت زایی تا پایان توانسته باشد. سپس در هر ترانسکت، که‌ها (شامل پوشش گیاهی) و میان که‌ها انتخاب گردید و طولی بر روی عکس اکولوژیکی و طول میان که‌ها در ترانسکت نیز شد. از هر یک از قطعات تعداد 5 نکته تعبیه و با استفاده از مدل تحلیل عملکرد چشپانداز (LFA) 11 پارامتر سطحی خاک پایداری توسط پوشش خاک، پوشش لاش‌برگ، پوشش نهان‌دانان، پوشش گیاهان، نوع و شدت فرسایش، مواد رسوبی (نشش‌شده)، مقاومت

28
به تخلف، پایداری در برای رطوبت تعبیه و تفوذذیری، توسیع طول و عرض گندمیان، پرورش علیه درختان و بوته‌ها، پوشش لاش‌برگ، منشا و میزان تجزیه، ناهوئیاری سطح حاکی، مقاومت به تخریب، پایداری در برای رطوبت و بافت حاکی سنجیده شد و در پایان چرخه مواد غذایی توسیع طول و عرض گندمیان، پرورش علیه درختان و بوته‌ها، پوشش لاش‌برگ، منشا و میزان تجزیه، پرورش شناختان و ناهوئیاری سطح حاکی اندازه گیری گردید (شکل ۵).

شکل ۲- شاخص‌ها و ارتباط آن‌ها با شاخص‌های سطح‌های اصلی شامل (پایداری، تفوذذیری و چرخه مواد غذایی) (افتیباس از Tongway and Hindley 2004).

همچنین برای بررسی وضعیت ساختاری لکه‌های مختلف اکولوژیک و مناطق مختلف پنج ویژگی ساختاری شامل شمار لکه‌های اکولوژیک (تعداد موجودی که در طول واحد تراسنکت از جریان آب سطحی جل‌گیری می‌کند)، سطح کل لکه‌های اکولوژیک (طول لکه‌ها×عرض لکه‌ها)، شاخص سطح لکه (طول تراسنکت×100 سطح کل لکه‌های اکولوژیک)، شاخص سازمان‌بندی چشمانداز (طول تراسنکت/طول لکه‌های اکولوژیک) و میانگین فاصله بین لکه‌های اکولوژیک تعبیه شد (کریمیان، ۱۳۹۶، حشمتی و همکاران، ۱۳۸۷).
تجزیه و تحلیل داده‌ها

Excel

تجزیه و تحلیل آماری داده‌ها با استفاده از نرم‌افزار تحلیل عملکرد چشماندای که در محیط توسط تنگ و لویولدگ 2002 طراحی شده، انجام گرفت (Tongway and Ludwig, 2002). همچنین برای مقایسه خصوصیات ساختاری و عملکردهای مختلف لکه‌ها و مناطق مختلف مورد بررسی از آزمون تجزیه واریانس یکطرفه و مقایسه میانگین از آزمون دانکن در محیط نرم‌افزار SPSS21 انجام گرفت.

نتایج

الف- بررسی ویژگی‌های ساختاری لکه‌های اکولوژیک در مناطق مختلف

نتایج نشان داد میانگین طول لکه‌های اکولوژیک در مناطق مورد بررسی، پارک ملی قرخود و اسپاخو به ترتیب 135/79، 0/9، 0/8 و 0/7 متر است. بیشترین طول فضای بین لکه‌ها در منطقه اسپاخو با 135/79 متر مشاهده شد. بیشترین کمترین تعداد لکه‌ها در 10 متر به ترتیب در پارک ملی (1/2) و اسپاخو (0/7) وجود داشت. بیشترین میانگین عرض لکه‌های اکولوژیک متعلق به پارک ملی گلستان (145 سانتی متر) و کمترین آن در منطقه اسپاخو (818 سانتی متر) بود. سطح کل و شاخچ سطح لکه به ترتیب در پارک ملی (145) و اسپاخو (818) بررسی به ترتیب 0/7 و 0/2 مربوط به مناطق پارک ملی، قرخود و اسپاخو می‌باشد (جدول 1).

جدول 1- میانگین ویژگی‌های ساختاری لکه‌های اکولوژیک در مناطق مختلف

<table>
<thead>
<tr>
<th>شاخص</th>
<th>سازمان</th>
<th>پارک ملی</th>
<th>قرخود</th>
<th>اسپاخو</th>
</tr>
</thead>
<tbody>
<tr>
<td>ظرفیت</td>
<td>پارک ملی</td>
<td>4/27</td>
<td>0/21</td>
<td>0/12</td>
</tr>
<tr>
<td>تعداد آراستگی</td>
<td>پارک ملی</td>
<td>5/7</td>
<td>0/9</td>
<td>0/9</td>
</tr>
<tr>
<td>لکه</td>
<td>پارک ملی</td>
<td>0/145</td>
<td>0/9</td>
<td>0/8</td>
</tr>
<tr>
<td>سطح کل</td>
<td>پارک ملی</td>
<td>0/79</td>
<td>0/8</td>
<td>0/7</td>
</tr>
<tr>
<td>سطح شاخچ</td>
<td>پارک ملی</td>
<td>0/79</td>
<td>0/8</td>
<td>0/7</td>
</tr>
</tbody>
</table>
ب- بررسی ویژگی‌های عملکرد کل در مناطق مختلف

شاخص‌های عملکرد کل در مناطق مختلف، با در نظر گرفتن تعداد و سطح لکه‌های اکولوژیک مقایسه‌گذاری شده‌اند. نتایج نشان داد از لحاظ شاخص پایداری بین مناطق پارک ملی با خروجی در سطح ۵ درصد اختلاف معنی‌داری وجود ندارد. کمترین شاخص پایداری در منطقه برسی‌‌شهر مربوط به منطقه اسپاخو با ۴۷/۶ درصد و بیش‌ترین آن متعلق به خروجی با ۵۳ درصد است. بین شاخص‌های نفوذپذیری در هر سه منطقه اختلاف معنی‌داری در سطح پنج درصد وجود دارد. بیش‌ترین (۴۳ درصد) و کمترین (۳۷ درصد) شاخص نفوذپذیری با ترتیب بسیاری به پارک ملی و اسپاخو می‌باشد. همچنین جرخه مواد غذایی در هر سه منطقه اختلاف معنی‌داری را با هم نشان داد به طوری که بیشترین آن در پارک ملی می‌باشد. (جدول ۲) و کمترین در اسپاخو (۲۳ درصد) مشاهده شد (جدول ۲).

جدول ۲- مقایسه شاخص‌های عملکرد کل در مناطق مختلف

<table>
<thead>
<tr>
<th>موقعیت</th>
<th>متوسط پایداری (%)</th>
<th>متوسط نفوذپذیری (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پارک ملی</td>
<td>۴۳/۵</td>
<td>۴۷/۶</td>
</tr>
<tr>
<td>خروجی</td>
<td>۴۴/۰</td>
<td>۵۳/۴</td>
</tr>
<tr>
<td>اسپاخو</td>
<td>۴۷/۶</td>
<td>۵۳/۹</td>
</tr>
</tbody>
</table>

میانگین اعداد پایه هر شاخص به‌صورت سنوی با هم مقایسه شدند. حروف مشابه در هر سه منطقه نشان‌دهنده عدم اختلاف معنی‌دار در سطح ۵ درصد می‌باشد.

ج- بررسی شاخص‌های عملکرد لکه‌های اکولوژیک در منطقه پارک ملی

لکه‌های اکولوژیک موجود در محدوده مطالعاتی در پارک ملی شامل قطعات: گندمی + یپن برگ علفی، گندمی و خاک‌اکت و سنگ‌زه + لاسیک بود. نتایج نشان‌داده‌های به لحاظ هر شاخص پایداری، نفوذپذیری و جرخه مواد غذایی بین قطعات شناسایی شده در سطح سه درصد اختلاف معنی‌داری وجود دارد. هر سه شاخص در لکه اکولوژیک مخلوط گندمی + یپن برگ علفی بیشتر از دو لکه دیگر بود (جدول ۳).
تشریح حفاظت زیست بوم گیاهان/ دوره ششم، شماره دوازدهم، بهار و نیسان ۱۳۹۷

جدول ۳- مقایسه شاخص‌های عملکرد کله‌های اکولوژیکی در منطقه پارک ملی

<table>
<thead>
<tr>
<th>قطعات اکولوژیک</th>
<th>متوسط یادپاتری (۱/۰)</th>
<th>متوسط طفوذپذیری (۱/۰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>گندمی + یهن برگ علفی</td>
<td>۵۷/۱۴۶</td>
<td>۵۷/۱۳۴</td>
</tr>
<tr>
<td>گندمی</td>
<td>۴۸/۱۶۲</td>
<td>۴۸/۱۴۵</td>
</tr>
<tr>
<td>خاک لخت و سنگریزه + لاشرگ</td>
<td>۲۱/۳۴۵</td>
<td>۲۱/۳۴۴</td>
</tr>
</tbody>
</table>

میانگین اعداد یا هر شاخص به‌صورت ستونی با هم مقایسه شدند. حروف مناسب از لحاظ آماری در سطح ۵ درصد معنی‌دار است.

دار نیستند.

جدول ۴- مقایسه شاخص‌های عملکرد کله‌های اکولوژیکی در منطقه قرخود

<table>
<thead>
<tr>
<th>قطعات اکولوژیک</th>
<th>متوسط یادپاتری (۱/۰)</th>
<th>متوسط طفوذپذیری (۱/۰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>گندمی + یهن برگ علفی</td>
<td>۴۷/۳۲۳</td>
<td>۵۷/۳۲۰</td>
</tr>
<tr>
<td>گندمی</td>
<td>۴۷/۳۲۳</td>
<td>۴۷/۳۲۰</td>
</tr>
<tr>
<td>خاک لخت و سنگریزه + لاشرگ</td>
<td>۲۱/۵۳۰</td>
<td>۲۱/۵۳۰</td>
</tr>
</tbody>
</table>

میانگین اعداد برای هر شاخص به‌صورت ستونی با هم مقایسه شدند. حروف مناسب از لحاظ آماری در سطح ۵ درصد معنی‌دار است.

معنی‌دار نیستند.

جدول ۵- بررسی شاخص‌های عملکرد کله‌های اکولوژیکی در منطقه اسیاقو

لکه‌های اکولوژیک موجود در محدوده مطالعاتی اسیاقو شامل قطعات: یهن برگ علفی، بوته + یهن برگ علفی، بوته و خاک لخت و سنگریزه بود. نتایج نشان داده به لحاظ هر سه شاخص پایداری، طفوذپذیری و جرخه مواد غذایی بین همه قطعات مشابهانی شده با زیست شاخص‌های نفوذپذیری در لکه یهن برگ علفی و بوته + یهن برگ علفی، بوته در سطح پنج درصد اختلاف معنی‌داری وجود دارد. هر سه شاخص در لکه اکولوژیک مخلوط بوته + یهن برگ علفی بیشتر از سه لکه دیگر بوته (جدول ۴).
جدول ۲- مقایسه شاخص‌های ممکن‌کننده آگولوزیک در منطقه آسیا و غرب

<table>
<thead>
<tr>
<th>قطعات آگولوزیک</th>
<th>متوسط چرخه مواد غذایی (ثانیه)</th>
<th>متوسط پایداری (ثانیه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲/۳۴۴۹</td>
<td>۲/۳۱۶۶</td>
<td>۱/۹۶۶۶</td>
</tr>
<tr>
<td>۲/۴۶۶۲</td>
<td>۲/۳۷۲۶</td>
<td>۲/۳۱۲۶</td>
</tr>
<tr>
<td>۱/۹۴۶۷</td>
<td>۱/۹۰۷۶</td>
<td>۱/۹۰۷۶</td>
</tr>
<tr>
<td>۱/۸۷۵۱</td>
<td>۱/۸۷۵۱</td>
<td>۱/۸۷۵۱</td>
</tr>
</tbody>
</table>

خاک لخت و ستگزره

میانگین اعداد برای هر شاخص به‌صورت ستونی با هم مقایسه شده‌اند. حروف مشابه از لحاظ آماری در سطح پنج درصد معنی‌دار نبوده‌اند.

بحث و نتیجه‌گیری

شاخص پایداری، تغذیه‌پذیری و چرخه عناصر غذایی در مناطق مورد مطالعه تفاوت معنی‌داری نشان داد که با تغییر سطح مدیریتی در مناطق مورد مطالعه فاصله‌های خصوصیات ساختاری و عملکردی مربوط دستخوش تغییرات است. در منطقه پارک ملی خصوصیات بسیاری در همه موارد ساختاری و عملکردی به‌جز شاخص پایداری که در مثل این حفاظت‌شده قرخود معیار، این سطح تغییرات ساختاری و عملکردی به نوع مدیریتی آمیزه می‌گردد که جزئی مفرط و چرای زودرس از جمله مهم‌ترین این دولای می‌باشد (جففزی و همکاران، ۱۹۳۴) در پارک ملی هیچ‌گونه چرای دام اهلی صورت نمی‌گیرد و منطقه در طول سال تحت حفاظت مقیاس‌های بسیاری این شرایط باعث شده است که به‌طور کلی منطقه مذکور از شرایط مناسب، ترین نسبت به دو منطقه دیگر داشته باشد. در منطقه حفاظت‌شده قرخود بخشی از سال آبزی چرای دام به دام ماندن منطقه داده می‌شود ولی در منطقه اسپاخو در تمام سال چرای دام آزاد است و چرای زودرس و بیش از حد ظرفیت مرتع باعث تخریب پوشش گیاهی و خاک منطقه شده است. بدلیل فشار چرایی زیاد در بندمودت، شرایط خاک به‌طور نامناسب تغییر یافته تجهیز خاک کمتر شده، خاک ساختارش خود را در نتیجه لکدلک‌هی دام از دست داده و در نتیجه میزان غله آب کاهش پذیر و به‌طور کلی آگولوزیک گاهی چندساله از جمله Gundelia tournefortii (Agropyron spp) کاهش یافته است و نهایتاً عللی نظری افزایش یافته همچنین درصد خاک لخت و بدون پوشش در مرتع اضافه می‌گردد. در مراتعی که مدیریت
نشریه حفاظت زیست سیستم گیاهان/ دوره ششم، شماره دوازدهم، بهار و تابستان ۱۳۹۷

به‌تربیت داشته و وضعیت آن‌ها متوسط است و وزن‌گی‌هایی ساختاری و عملکردی نسبت به سایت‌های با
وضعیت ضعیف و خیلی ضعیف، شرایط مناسب‌تری دارد. افزایش سطح و تعداد زیاد لاش‌های گندم‌بان
در مراتع با وضعیت مناسب بعلت چراپ سیب‌کریک‌ککه، حجم زیاد لاش‌برگ و وجود به‌نهازدان آن‌دهد
می‌باشد که با نتایج جغرافی و همکاران (۱۳۹۳) هم‌خوانی دارد. نتایج محققین دیگر، پاپک و همکاران
که وزن‌گی‌های (Tongway and Hindley, 2004) و Tannekga و Hindei (Pyke et al., 2002) ساختاری چشمان‌دارن را با استفاده از روش
LFA و دیگر روش‌های ارزیابی پوشش گیاهی در
اکوسیستمهای مختلف بررسی نموده‌اند نشان داده است که چرایی شدید منجر به تغییر وزن‌گی‌های
ساختاری مرتفع از طرق کاهش گیاهان مرغوب و چندساله، افزایش گیاهان کسانه، فضاهای فضاهای
خالی و کاهش میزان تولید و حجم لاش‌برگ خواهد شد. همان‌گونه که نتایج نشان داد پوشش لاش‌برگ
در منطقه پارک ملی و حفاظت‌نشده فروخته بهدبند شرایط حاکم بر منطقه به‌پرداخت از منطقه اسپاخو می-
باشد. وزن‌گی‌های عملکردهای در منطقه مورد مطالعه به‌صورت می‌تواند نوع فعالیت‌های مدیریتی و نتایج
حاصله از آن‌ها را نیز نشان دهند که با نتایج پلانت و همکاران (2005) و پرانت (Pellant et al., 1986)
همکاران (1393) هم‌خوانی دارد.

در این مطالعه همچنین عملکرد قطعات اکولوژیکی مختلف در مناطق مختلف بررسی شد. در پارک
می‌توان با سایر قطعات داشت. در منطقه اسپاخو فرم روشی گندمی حذف و پوشش‌های جایگزین آن شد.
در این منطقه قطعه مخلوط بونه + پهن برک علی‌رغم عملکرد بهتری نسبت به سایر قطعات اکولوژیک
موجود در منطقه داشت. دلیل بهتر دادن خصوصیت عملکردی در قطعات اکولوژیک مخلوط در همه
مناطق مورد بررسی را می‌توان وجد فرم‌های روشن مخلوط این از نوع قطعات که سطح بشری را
انگال می‌کند و در اشک‌آبی مناطق متفاوت بوده که به‌همه شرایط عملکردهای می‌گردد که با
نتایج جغرافی و همکاران (1393) هم‌خوانی دارد. از دلائل مهم کاهش شاخص‌های ساختاری و
عملکردهای در منطقه اسپاخو را می‌توان حذف فرم‌روشی گندمی پوشش بحران‌زدایان در این منطقه
داشت. اهمیت پوشش قشره‌های زیستی (کربوپتوگرام) در ثبت سطح خاک به اثبات رسیده است
عملکرد یکی ساختاری، (Ludwig et al., 1993) لویدگی و همکاران (1993) و در
توالی‌آن آن چشم‌انداز برای به دام اندیختن و فرگه‌داری آب باران و مواد غذایی توسط لکه‌های اکولوژیک
می‌دانند که برای رشد گیاه‌ها لازم است. محققین با بررسی قابلیت هیدروژئیک گیاهان مختلف بیان
کردن که خاک در گونه‌های مرغوب و دائمی درآی‌های نفوذ‌پذیری بیشتری نسبت به خاک لکه‌های

۳۴
نتایج تحقیق حاضر نشان داد که فرم‌های رویش‌گردی (کندمی و پهن‌برگ فلزی) شرایط ساختاری و عملکردی مراجع را بهبود می‌بخشد، همچنین نتایج نشان داد نوع مدیریت به لحاظ حفاظت (سطح جرای) تأثیر منتفی بر شاخص‌های مراجع دارد بهطوری که با افزایش سطح حفاظت، شاخص‌های عملکردی و ساختاری موسیقی افزایش یافته که منطقه پارک می‌رود، منطقه حفاظت‌شده فرختو و منطقه بیلابی اسپایک بهترین را به خدمت اختصاص داد. شاخص‌های سطح حاکم نقش مهمی در تفسیر فعالیت‌های مدیریتی ایفا می‌کند. شاخص‌های سطح حاکم می‌توانند به عنوان هشدارهای اولیه برای تعیین تغییر مراجع باکر رفت و از این طریق اقدامات لازم جهت جلوگیری از شدت تغییر با بهبود شرایط فراهم اورده. به‌طور کلی با توجه به این که کچ از کارکردهای مهم بیشتر گیاهی مراجع حفاظت‌شده از منابع آب و خاک می‌باشد، از نتایج تحقیق حاضر می‌توان جهت انتخاب قریب‌های گیاهی مناسب برای حفاظت این منابع بالارز بهره برداری می‌کند.

منابع

ازرانی ج، علیدی، م، 1385. بررسی اثر مدیریت بر تغییرات ویژگی‌های سلامت مراجع و شاخص‌های تعیین‌کننده آن حیاتیت‌های، مرکز تحقیقات و بیماری‌های 136: 145-161.

باقری، ا، مصداقی، م، امیر خانی، م، 1387. مقایسه تکیهگاه پوشش گیاهی مراجع تحت قرق، چرام، مشهد و گوسفند در پارک ملی گلستان و منطقه همچون، بوشهر و زاهدانی، 89: 93-95.

جعفری ف، بشری ج، جعفری ر، 1392. بررسی و مقایسه ویژگی‌های ساختاری و عملکردی چشمانداز در لکه‌های اکولوژیکی و وضعیت‌های مختلف اکوپیستیوم مرکزی (مطالعه موردی: مرکز تجربی ایجاد اصفهان) پهلوشانی کاربردی، 3: 10-13.

حمصی، غ، 1382. بررسی آثار عوامل محیطی بر استفراغ و گسترش گیاهان مراجع با استفاده از آنالیز چند متغیره، مجله منابع طبیعی ایران، 56: 97-100.

حمصی، غ، ناصری، ک، قربانی، غ، 1387. تحلیل عملکرد چشمانداز (متراژ) انتشارات جهاد دانشگاهی مشهد، چاپ اول.

حمصی، غ، قربانی، و، 1395. مقایسه کارکردهای اکولوژیکی چشماندازهای شمالی و جنوبی مرکز در کناری خشاب، شهرستان گچساران، مرکز و آبخاز، 65-585.
نتیجه حفاظت زیست بوم گیاهان/ دوره ششم، شماره دوازدهم، بهار و تابستان ۱۳۹۷

خلایمی اهوازی، ل، حشمی، غ. ۱۳۹۱. بررسی لکه‌های مختلف با استفاده از روش LFA در منابع شناسه شیرسیان اهواز. فصلنامه پژوهش‌های فرسایش محیطی، ۷: ۵۴-۶۰.

قدسی، م. ۱۳۸۸. بررسی ابعاد لکه‌های اکولوژیکی از نظر زمینی و در دو سطح میدری (مطالعه موردی: مرکز ایمنی‌سنجی پارک ملی گلستان و منطقه هرمچور). پایان‌نامه کارشناسی ارشد مرتبه داری. دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

قلمی نیا، ج. حشمی، غ. چایی، چی. م. ۱۳۸۷. مقایسه ارزیابی وضعیت مرتع با روش خصوصیات سطح خاک و روش چهار عامل در مرتع بودرپارک ملی گلستان. پژوهش و سازندگی، ۳۰-۱.

کربیمان، و. کلو، م.، نوده، ان. چی، ی. ۱۳۹۴. ارزیابی و مقایسه شاخص‌های سطح خاک در دامنه‌های غربی و شرقی مرتع لیستر استان کهگلی‌بوی و بپراهم. پژوهش‌های ایمن‌سنجی، ۱۰۹: ۷۲-۸۲.

کربیمان، و.، کلو، م.، نوده، ان. چی، ی. ۱۳۹۶. ارزیابی و مقایسه ویژگی‌های ساختاری اکوسیستم‌ها مرتعی در موقعیت متفاوت چشمه‌نادر (مطالعه موردی: مرتع خشاب لیستر، چشمه‌نادر، نشره جنگل و مرتع، ۱۰۳: ۳۸-۴۷.

باری، ر. طولی، غ.، زارع، س. ۱۳۹۰. بررسی شاخص‌های سطح خاک و ویژگی‌های عملکردی مرتع با استفاده از روش تحلیل عملکرد چشمه‌نادر (LFA) (مطالعه موردی: مرتع چشمه‌نادر). خصوصیات علمی پژوهشی تحقیقات مرتع و بیولوژی، ۱۸: ۳۴-۳۲.

