تأثیر بر شکاف انداز هوایی بر ویژگی‌های رویشی و رشدی گونه علف‌فایی Astragalus clychoyllon و effuses

سعیده ندرگ منافیان، پژمان طهماسبی.[1] محسن فعال فیض آبادی.[2] رضا امیدی پور.[3]

[1] دانشآموخته کارشناسی ارشد مربی‌داری، دانشکده منابع طبیعی و دانشگاه شهید بهشتی، شهرکرد
[2] دانشیار گروه مربی و آبخزیاری، دانشگاه منابع طبیعی و علوم زمین، دانشگاه شهید بهشتی، شهرکرد
[3] دانشجوی دکترا مربی‌داری دانشکده منابع طبیعی و علوم زمین، دانشگاه شهید بهشتی، شهرکرد

تاریخ پذیرش: 1397/12/18
تاریخ دریافت: 1398/01/05

چکیده
چرا و چگونه مصرف دام شامی حفاظت از منابع طبیعی و عامل افزایش کمی و کیفی تویله و بهبود ترکیب گیاهی در اکوسیستم‌های مرطوبی است. همچنین آگاهی از تأثیرات شدید گواهی در مطالعه گزارش‌های مربی‌داری و بهبود گونه‌های طبیعی منابع از آواز و سواد محیطی بهبود می‌یابد. مطالعه گزارش‌های مربی‌داری و بهبود سلول‌های طبیعی بهبود گونه‌های طبیعی منابع از آواز و سواد محیطی بهبود می‌یابد.

Astragalus effuses و Astragalus clychoyllon از نظر اپراگالوس مرطوبی از منابع طبیعی و عامل افزایش کمی و کیفی تویله و بهبود ترکیب گیاهی در اکوسیستم‌های مرطوبی است. همچنین آگاهی از تأثیرات شدید گواهی در مطالعه گزارش‌های مربی‌داری و بهبود گونه‌های طبیعی منابع از آواز و سواد محیطی بهبود می‌یابد.

Pejman.tahmasebi@nres.sku.ac.ir

[کوپیسته مستند: 169]
گونه‌های A. effuses و A. cyclophyllon از نظر صدق، موجب کاهش 2/3 و 2/12 برای تولیدات در متقابل با تجارت کشت درشت، حساسیت کمی را نسبت به گونه A. effuses نشان داد. نتایج با توجه به تحلیل چهاربازار گونه A. cyclophyllon گزارش مناسبی برای اصلاح و توسعه مراحل نیمه استی ته به مدرک توسط دانش‌آموز نهاد گزارش کار کاروان و زایند درود از این استان سرشمه مدیر فضایی و شدید در آن‌ها اثر زیست‌محیط زیادی را به یار وارد است (طهماسبی و ابراهیمی). در نتیجه، این اثر زیست‌محیطی مهم سازمان جنگل و مراتع بدون دلیل، معرفی و کشت کننده‌های مهم دارد، در این مراحل در این دو ناحیه یا شرکت مربوط به خوشه‌های آن‌ها باید به مقام‌های جز شرکت کند. در نتیجه شرکت کرده، کفایت‌های از گونه‌های بومی باید آن‌ها انتخاب شوند که علاوه بر موارد فوق، مقاومت چربی خوبی داشته باشند. مطالعه و شناخت محصولات واقع منطقه از ارزش‌های اکوسیستمی بهبودی شناخت و اکتشافی گیاه در برای میزان بهبودی می‌کنند. در طرفین صورتی که در این دو ناحیه داریم، نتایج گونه‌های گل‌دار مرمت (طهماسبی و ابراهیمی). 1390) نشان دادند که طبیعت گیاهان مختلف (پشیب‌ها، گیاهان حساس به چرا) در مقابل چرا دام، می‌تواند مصرف منع طبیعی و همچنین مرمت‌های را در انتخاب نشان داد. در این راستا، شیب‌های‌زای یا تأثیر فراورنده دام بر Li et al., 2002) و زیگر گیاه افزایش مدیک خوایه بهبودی (Abou-Mansour et al., 2002) در تحقیقه بررسی تأثیر شیب‌هایی چرا دام بر روی رشد و مقاومت گونه نشان دادند که قطع درشت متون و زیاد در فصل ناپایدار موجب کاهش شدید ارتفاع frigida
تشریح حفاظت زنبور گیاهان / دوره هفتم، شماره چهاردهم، بهار و تابستان ۱۳۹۸

مجدد گیاهان گزارش دانش که فصوله زمانی قطع نسبت به تعداد قطعات، اثر بیشتری بر رشد را پذیرش کند اگر دیگر کاربرد آن شیب سازی تأثیرات قطع دام با استفاده از قطع گیاهان نمایه انست. این رفتین گیاهان مهاجم است. یکی از تأثیر نتایج مختلف بر گیاهان مهاجم، می‌توان با تعبیه‌های دانست با واحد سطح ته‌ها به‌طور کامل و اصلاح نمود. در این راستا، وست و فرح (۱۹۸۹) به‌طور کامل استadapterیا تأثیرات قطع گیاهان بر روی گونه‌های گیاهی (بخصوص گیاهان مرمی) می‌توان به تعبیه‌های مقاوم و میزان بسیار برون از آنها با تعبیه‌های قطع دام اشاره نمود و بر همین اساس، لور بی‌پردازی مجاز را برای مناطق مختلف بر اساس گیاهان غالب تعیین نمود. در Lolium perenne و Agrostis tenuis مشخص شد که گونه اول بسیار مقاوم و گونه دوم بسیار پسپدیدر بوده و پاکشک طبیعی گونه در محیط نیز با این موضوع همخوانی دارد (طهماسبی و ابراهیمی، ۱۹۹۰). همچنین، مقاومت چربی Agropyron spicaum با گونه‌های مختلف Agropyron desertorum بیشتر به‌طور که از طرف گونه یکی از محیط‌های غربی آمریکای شمالی مشاهده شد را می‌توان به درجات متفاوت تحمیل به قطع آنها مربوط دانست (۱۹۸۵).

تولید یکی از عواملی است که بر استقرار و زندگی گیاهان در قفل‌ها بعد از چرا تأثیر گذاشته است. نتایج به‌دست‌آمده از بررسی‌ها نشان می‌دهد که تولید یکی از افزایش باکر مقاوم در حاکی را می‌توان به‌عوامل نویع استراتژی تحمیل و ایجاد از چرا تعبیر نمود. اگرچه زمان کوتاه در دوره رویش گیاهان بکسالر در برخی موارد به عنوان یک مکانیسم یافته در زمان (از نظر اعیان) عمل می‌کند تولید زاید برک و باکر بند پایدار در آنها به عنوان یک مکانیسم تحمیل قلمداد می‌شود که استقرار و رشد این گیاهان را پس از چرا شدید استریت می‌بخشد (۱۹۸۰). بنابراین در بررسی تأثیر چرا دام بر گیاهان، عوامل بر وجود ویژگی‌های راهی و رویش تولید یکی‌نگر محدود قطع بیشتر. مطالعه حساسیت به‌دست‌آمده از بررسی تأثیر شیب‌سازی چرا دام با تعبیه‌های مختلف قطع (صفر، ۳۰، ۵۰ و ۸۰ درصد) بر ویژگی‌های راصی و زایمی دو گونه مرتعی خودکار علونفای یک تغییر با گونه‌های مختلف آغاز می‌کند. این گونه‌ها از گونه‌های مرتعی Atragalus effuses و Atragalus cyclophyllon بسیار خوش‌خواهد موجود در منطقه بوده که علاوه بر تأمین علونفای دام نقش به‌سیله مسئولیت در حفاظت خاک داشته و نیز در امر اصلاح مراتع مورد توجه می‌باشند. نتایج این تحقیق می‌تواند مدیران و
سیده نرگس منافیان و همکاران

برنامه‌ریزی‌های در تربیین حداکثری برای مجازات و همچنین مقاومت گونه‌های مذکور نسبت به شدت‌های مختلف چراچیده‌ای دام آگاه نماید.

مواد و روش‌ها

منطقه موردطالعه

منطقه موردطالعه در منطقه استان‌های خراسان و بختیاری و استان‌های خوزستان و اصفهان در معرض آگاه گزارش تعداد 51 و 60 دوستان طول جغرافیایی و 42 کرخه و 22 دوستان عرض جغرافیایی فراگرفته است و مساوی آن بالا 11/800 هکتار است. یکی از غلبه مراتع از این گونه‌ها علفی و گندم‌مان چندساله به همراه گونه‌های پره‌پای تکینگ شده است.

گونه‌های گیاهی موردطالعه

این گیاه با نام علمی Astragalus effusus- 1 متعلق به راسته بقلاوات (Fabaceae)، خانواده براهانآسا (Fabales)، جنس گون (Astragalus) و گونه (Effusus) بخش یک بخش از گونه‌های علفه‌ای و میان بیشتر و پایان مبتنی بر این مراتع مهاجر است که از آغاز خشکوی در پایان جراح دام رخ خسارت این مراتع محسوب می‌شود.

روش تحقیق

این تحقیق به منظور تعیین میزان آسیب‌پذیری وا تحمل گونه‌های کلی مربوط به راسته بقلاوات (Fabaceae) خانواده براهانآسا (Fabales)، جنس گون (Astragalus) و گونه (Effusus) این گیاه با نام علمی Astragalus effusus- 1 متعلق به راسته نسیم‌ها (Onobrychoidei) و گونه (Cyclophyllon) و گونه (Effusus) این گیاه با نام علمی Astragalus effusus- 1 این گیاه با نام علمی Astragalus effusus- 1 در یک مرحله یک بخش از میانبندی این گیاه از مقاومت خوابی در پایان جراح دام رخ خسارت است و در صورت اجرای مدیریت راهپیمای مناسب این بیماری با تولید بسیار مناسبی در این مراتع خواهد داشت.

Astragalus effusus و Astragalus cyclophyllon

۱۷۳
نتیجه‌گیری

نتیجه‌گیری نشان داد که در گونه‌ی A. effuses به‌جز اثر متقابل، تیمار قطع در سال، بقیه عوامل مدورنظر در سطح ۵ درصد دارای تفاوت معنی‌دار شده‌اند. اما در گونه‌ی Acyclophyllum به‌جز اثر اصلی سال و اثر متقابل تیمار قطع در سال، سایر عوامل مدورنظر در سطح ۵ درصد معنی‌دار نبودند. (جدول ۱). همچنین نتایج نشان داد که همه‌ی اثرات اصلی و متقابل در نظر گرفته شده برای تعداد گل و بذر در هر دو گونه، در سطح ۵ درصد دارای تفاوت معنی‌دار شده‌اند (جدول ۱). در متغیر ارتفاع نیز برای هر دو گونه به‌صورت بانک اثرات اصلی سال، سایر عوامل در سطح ۵ درصد معنی‌دار شده بودند (جدول ۱).
جدول 1- تأثیر تیمارهای مختلف بر خصوصیات روشی و زایشی دو گونه ا. افوسس و ا. سیکلوفیلön

<table>
<thead>
<tr>
<th></th>
<th>A. cyclophyllon</th>
<th>A. effuses</th>
<th>A. effuses</th>
<th>تعداد ارتقاء</th>
<th>تعداد نمودار</th>
<th>هزینه</th>
<th>میزان تغییرات</th>
<th>تعداد نمودار</th>
<th>هزینه</th>
</tr>
</thead>
<tbody>
<tr>
<td>تولید</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>نیمار قطع</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>مرحله قطع</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>سال</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>تیمار قطع × سال</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
</tr>
</tbody>
</table>

** به ترتیب بانکار نمودار نمایدار در سطح ۱ و ۵ درصد و عدم معنی‌دار است.**

- اثرات تیمارهای مختلف قطع بر ویژگی تولید، قطع سبک و متوسط (۳۰ و ۵۰ درصد)، از ارتفاع نرخ تخلیه نیسته‌گروه ۲/۵ برای گونه ا. افوسس و ا. سیکلوفیلön در این گونه در این دو تیمار به طور متوسط در حدود ۲/۵ برابر، نسبت به تیمار کنترل به‌دست‌آمده است. در سنگین‌ترین تیمار (قطع ۸۰ درصد)، نیز میانگین کاهش تولید نسبت به تیمار کنترل در حداکثر ۲/۵ برابر بود و ویژگی تولید در تیمارهای مختلف قطع در گونه ا. افوسس و ا. سیکلوفیلön از ارتفاع معنی‌داری نبوده. به طوری که افراشی شد تیمار قطع در تیمارهای ۲/۵ و ۵۰ درصد میانگین تولید به‌دست‌آمده به ترتیب ۲/۵ و ۵/۶ برابر نسبت به تیمار کنترل کاهش یافته است.
نشریه حفاظت زیست بوم گیاهان/ دوره هفتم، شماره چهارم، بهار و تابستان 1398

شکل 1- اثر دو سال اعمال شدت‌های مختلف قطع بر تولید نهایی گونه‌های مورمورسی

تأثیر برداشت‌های مختلف بر گلدهی گونه‌ی *A. effuses* اختلاف معنی‌داری را با تیمار کنترل نشان داد. با توجه به نتایج برداشت‌های گلدهن، میانگین گلدهن در تیمارهای قطع ۰، ۲۷ و ۵۰ درصد میانگین گلدهن بدست‌آمده به ترتیب ۱۱، ۱۵ و ۲۷/۲ برابر نسبت به تیمار کنترل کاهش پیدا کرد. اما گلدهی گونه‌ی *A. cyclophyllon* این گونه در هر سه تیمار قطع با نشان دادن اختلاف معنی‌دار با تیمار کنترل، به ترتیب به اندازه ۴/۱ و ۶ برابر نسبت به این تیمار کاهش یافت (شکل ۲).

شکل 2- اثر دو سال اعمال شدت‌های مختلف قطع بر گلدهی نهایی گونه‌های مورمورسی

۱۷۶
میانگین بذردهی حاصل از شدت‌های مختلف قطع در گونه‌ی A. effuses نسبت به تیمار کنترل اختلاف معنی‌داری داشت. به طوری که با افزایش شدت قطع، افت میانگین بذردهی در این گونه قابل توجه بود. در تیمارهای قطع 50 و 80 درصد میانگین بذردهی به ترتیب 1.38 و 87 برای نسبت به تیمار کنترل کاهش نشان داده شد. اما میانگین بذردهی در A. cyclophyllon برداشت‌های سبک و متوسط اختلاف معنی‌داری نسبت به تیمار کنترل نداشت و توانست در این دو تیمار بهترین میانگین بذردهی را ثبت کند. اما میانگین بذردهی در سطح‌های تیمار در این گونه به شدت کاهش یافت. کاهش میانگین بذر در تیمارهای 50 و 80 درصد در این گونه نسبت به تیمار کنترل به ترتیب برای 2/3 و 19/5 برای بود (شکل 3). (A. effuses / A. cyclophyllon)
برای روشنی‌ریزی شدن چگونگی اثر سال و مرحله‌ی قطع بر متغیرهای مورد بررسی در گونه‌های ANOVA و مقایسه و دسته‌بندی میانگین‌ها به روش در اولین مرحله قطع در سال اول، میانگین تولید حاصله در تیمارهای مختلف قطع اختلاف معنی‌داری را نشان داد. در دومین و سومین مرحله قطع در این سال میانگین تولید برداشت سبک بالاتر از برداشت‌های متوسط و سنگین به دست آمد. در دومین سال تیماردهی، در همین مراحل، تولید بسته به تیمارهای مختلف سبک و متوسط اختلاف معنی‌داری نداشت و تولید حاصله از برداشت سنگین کمترین میانگین تولید را به دست داشت. اعمال تیمارهای مختلف قطع بر گونه‌های Cyclophyllon نشان داد که در برداشت سبک در هر دو سال، بیشترین میانگین تولید به دست‌آمده است و پی‌ازان از برداشت‌های متوسط و سنگین به ترتیب بالاترین میانگین تولید را به دست‌آورده. تنها در سومین مرحله تیماردهی در سال اول، میانگین تولید به دست‌آمده از تیمار قطع متوسط، کاهش زیادی داشت به طوریکه در این مرحله اختلاف معنی‌داری را با سنگین ترین تیمار نشان داد (شکل 5).
شکل ۵-اثر سالانه اعمال شدت‌های مختلف قطع در مراحل مختلف رشد بر تولید گونه‌های موردبررسی

گلدهی گونه‌ای در اولین مرحله‌ی اعمال ناشی از سال ۱۳۸۹ به‌بینین میانگینی را در نیم‌شمار A. effusus قطع متوسط نشان داده که این میانگین از نیم‌شمار کنترل نیز بالاتر بود. در دومین مرحله با افزایش شدت قطع از میانگین گلدهی این گونه کاسته شد و بهترین نتیجه در سیکدرین نیم‌شمار بدست آمد. در اولین مرحله بردشت در سال ۱۳۸۹ نیم‌شمار ۴۰ درصد توانست بهترین نتیجه را برای گلدهی این گونه در این مرحله نشان دهد. میانگین‌های حاصل از نیم‌شمار قطع متوسط و سنگین نیز اختلاف معنی‌داری را در این مرحله نشان ندادند. در مرحله بعدی، بردشت متوسط بیشترین میانگین گلدهی را برای این این گونه نشان داد و نتیجه‌های اختلاف معنی‌داری را با نیم‌شمار کنترل نشان داده. در این
نشریه حقوقات زیست یوم گیاهان/ دوره هفتم، شماره چهاردهم، بهار و تابستان ۱۳۹۸

مرحله بین میانگین‌های حاصله از سبک‌ترین و سنگین‌ترین تیمار نیز اختلاف معنی‌داری مشاهده نشد. در کل، در اولین سال اعمال تیمار، برداشت متوسط بالاترین و برداشت سنگین پایین‌ترین میانگین گل‌دهی را در همه مراحل قطع در این سال نشان داد. در سال دوم بین میانگین‌های گل‌دهی حاصله از تیمارهای قطع مختلف، برای این گونه اختلاف معنی‌داری مشاهده نشد (شکل ۶).

![A. cyclophyllon](image1)

![A. effusus](image2)

شکل ۶-اثر سال‌های اعمال شده‌های مختلف قطع در مراحل مختلف بر گل‌دهی گونه‌های مورد نظر

در دومین مرحله‌ی اعمال تیمار در سال اول، سبک‌ترین برداشت بالاترین میانگین بذردهی را نشان داد و بین میانگین‌های حاصله از برداشت‌های متوسط و سنگین نیز اختلاف

۱۸۰
معنی‌داری مشاهده نشد. در سومین مرحله تیمار‌دهی در این سال میانگین‌های به‌دست‌آمده از تیمار‌های مختلف در دارای اختلاف معنی‌دار بودند، به‌طوری که با افزایش شدت قطع میانگین بذر‌دهی این گونه در این سال کاهش یافت. در برداشت‌های متوسط و سنگین میانگین بذر‌دهی این گونه بسیار کاهش یافت و طوری که در سنگین‌ترین برداشت میزان آن به صفر رسید. برای گونه‌ی cyclophyllon نیز در تمامی مراحل قطع در سال اول و دوم، برداشت‌های سبک و متوسط بهترین نتیجه را بر بذردهی این گونه نشان دادند. در حالی که برداشت سنگین بذردهی را به‌شدت کاهش داد. (شکل 7).

شکل 7- اثر سال‌های اعمال شدت های مختلف قطع در مراحل مختلف رشد بر بذردهی گونه‌های مورف‌بررسی
شیروی حفاظت زیست یوم گیاهان/ دوره هفتم، شماره چهاردهم، بهار و تابستان 1398

در گونه‌های A. effuses در اولین مرحله قطع در سال اول و دوم بین میانگین‌های بهدست‌آمده از تیمار‌های مختلف قطع اختلاف معنی‌داری مشاهده نشده. در دومین مرحله قطع در سال اول میانگین ارتقای در برداشت‌های سبک و متوسط اختلاف معنی‌داری نداشت و بیشترین میانگین در این دو تیمار به دست آمد. با افزایش شدت برداشت در سومین مرحله تیمار‌دهی از میانگین ارتقای این گونه در این مرحله کاسته شد. در مراحل دوم و سوم تیمار‌دهی در سال دوم، برداشت‌های سبک و متوسط بهترین نتیجه در اولین میانگین ارتقای این گونه مشاهده شد. با نتیجه‌ی بهدست‌آمده از تیمار در سال اول بر میانگین‌های مختلف ارتقای این گونه مشابه با نتیجه‌ی بهدست‌آمده از تیمار جدید در A. effusus قطع اختلاف معنی‌داری را با سایر تیمارها نشان داد و بیشترین میانگین ارتقای در این تیمار به دست آمد. در سومین مرحله قطع بهترین ارتقای برای این گونه در پایه‌هایی که تحت تأثیر برداشت‌های سبک و متوسط بودند به دست آمد، به‌طوری که میانگین به‌دست‌آمده از این تیمارها اختلاف معنی‌داری را با تیمار کنترل نشان نداد (شکل 8).
بحث و نتیجه‌گیری
اعمال دو سال نیمار قطع بر گیاهان موردبرسی به‌خوبی نشان داد که عمل چرا در دوره‌های مختلف رشد و در شدت‌های مختلفی برداشت بر ویژگی‌های روشی و رشدی این گونه‌ها، اثرات یکسانی نداشتند. در طول مدت نیمار نشان داد که درشت‌تر برداشت متوسط می‌تواند تولید مناسبی داشته باشد. اما گل‌دهی و بذردهی این گونه، تنها در برداشت سبک، بهترین نتیجه را به دست می‌آورد. فوروارد و مگی (1999) برداشت را بر تولید، کیفیت علفه و مقاومت به چرا (زنده‌مانی) گونه Andropogon geradi موردبرسی قرار دادند و نتیجه‌گیری کردند که رشد مجدد این گونه در تکرار زیاد به مقدار قابل توجهی کاهش یافته است.

A. cyclophyllon

A. effusus

<table>
<thead>
<tr>
<th>سال</th>
<th>برداشت 1</th>
<th>برداشت 2</th>
<th>برداشت 3</th>
<th>برداشت 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1389</td>
<td>62%</td>
<td>63%</td>
<td>64%</td>
<td>65%</td>
</tr>
<tr>
<td>1390</td>
<td>66%</td>
<td>67%</td>
<td>68%</td>
<td>69%</td>
</tr>
</tbody>
</table>

کل 18 - اثر سالانه اعمال شدت‌های مختلف قطع در مراحل مختلف رشد بر اثر انداز گونه‌های موردبرسی

A. effusus

<table>
<thead>
<tr>
<th>سال</th>
<th>برداشت 1</th>
<th>برداشت 2</th>
<th>برداشت 3</th>
<th>برداشت 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1389</td>
<td>62%</td>
<td>63%</td>
<td>64%</td>
<td>65%</td>
</tr>
<tr>
<td>1390</td>
<td>66%</td>
<td>67%</td>
<td>68%</td>
<td>69%</td>
</tr>
</tbody>
</table>
در گیاه A. effuses نیز، افزایش شدت برداشت حساسیت این گونه به گرای تأثیرگذار در سنتیگن نمایان شده و رشد مجدد آن را با مشکل مواجه می‌کند به نظر گرفته شد که این گونه به جای افزایش شدت برداشت، در نهایت آشکارا برای کنترل کاربرد پوده و با یک چرای برای پیش‌بینی مراحل مجموعه‌ها گیاهان نشان داد که قدرت گیاهی را گاهی که به‌طور متوسط باعث می‌شود.

در گیاه A. cyclophyllon مختلف قطع بر خصوصیات روبنی و زایی‌ای این گونه نتایج عکس گونه‌ی قبل نشان داد. برای این‌گونه برداشت سبک بیشترین میزان تولید را نشان داد، اما گلدنه و بندمی‌خا در در بالا نشان دهنده این‌گونه حتی در شرایت بالا نیز بطور متوسط تماشا می‌کرد. این روش را برای رسیدن به مراحل مختلف به بسیاری تیوری نیاز دارد و تولید بسیاری تحت تأثیر شدت چرا دام قرار می‌دهد. بنابراین گیاه (Zhang and Romo, 1995) در این‌گونه انتخاب‌های آنتی‌بیوتیک متنوع داشته‌گاه سراسری مورد بررسی قرار داد و نتیجه‌گیری که برداشت متوسط، پرچم زایی و زندگی‌گونه این گونه 12 درصد افزایش داد و پس از هر برداشت سرعت رشد گیاه به حد زیادی کاهش یافت. گونه A. cyclophyllon که برداشت اثرآمیزتر رشد روشی بدون به‌طور متوسط A. effuses رشد گیاه از مواد خارجی برای به‌طور مایع در همان دوره استفاده نمی‌کند و با شرایط نوش‌زدایی در این‌گونه گیاه صورت دیده چون در اثر فرآیند نبودن شرایط شرایط بهینه برای رشد گیاه به ندراد. الکل که در مراحل بنابراین این‌گونه استفاده می‌کند. در نتیجه عکس شرایط جامعه در اثر فرآیند روشی گیاه در اثر اندازه‌گیری (Miler, 2001) در مراحل بنابراین گیاه این‌گونه از این‌گونه نمایان می‌باشد. گیاه می‌تواند در اثر فرآیند داشت، آنتی‌بیوتیک تاین می‌تواند در اثر فرآیند داشت، آنتی‌بیوتیک می‌تواند در اثر فرآیند دаш...

