چکیده
با استفاده از داده‌های مربوط به مجموعه‌های مختلف ترکیب گیاهی و دیگر متغیرهای محیطی در مراتع حویل آبی‌خز گلدن‌رود، فهمیده شد که

طبقات ارتقاء و رونق و چهار دامنه زمینه متغیرهای ویژه گونه‌ها در 148 نمونه کاربردی استفاده شده. نمونه‌برداری از یک‌خانه گیاهی در بی‌کهنه و ویژگی‌های موردنظر و محیطی‌های مورد انتخاب دامنه با دنیای گفت. سیستم‌های صورتی گرفته در منطقه نمونه‌برداری، عوامل گونه‌های بهتر گیاهی، تغییرات طبقات ارتقاء و جهت دامنه توسط دانه در هر نمونه‌برداری شرکت در هر

Detrended Canonical Correspondence Analysis

dianatig@modares.ac.ir
مقدمه

عوامل محیطی تعیین کننده خصوصیات رویشگاهی بود و نقش مهمی در نگهداری گیاهان دارد. به طوری که بر اکتش و استقرار گیاهان را کنترل می‌کند. لذا اطماعی از شرایط محیطی و نیازهای یکگونه می‌توانست در تعیین محل استقرار، برآخت جغرافیایی، میزان اپوئه و فعالیت آنها در محیط‌های مختلف ضرورت نمود (آردکانی، ۱۳۸۴). دلیل رشد بعضی گونه‌ها در محیط ویژه، به‌وساطه نیازهای محیطی آنها افزایش عوامل محیطی مانند: نور، دما، زمین و مواد غذایی است (مصادری، ۱۳۸۰). از این می‌توان به تغییر ذوب‌های محیطی می‌تواند در توزیع آرزوی و تغذیه گیاه و توزیع یوشش گیاهی اثر گذار (میر داوودی و زاهدی، ۱۳۸۳). گونه‌های گیاهی در محیط‌های معیینی از شرایط محیطی که طولی رشد آنها است، به حداکثر وقوع دست می‌یابد (Koller، ۲۰۰۱). چرخه گیاهی با شرایط روشگاهی خاص سازگاری دارد و با تغییر در شرایط روشگاهی، وقوع و انواع پرآکتش گیاهان نیز دست‌خوش تغییر می‌گردد (Hoffmann، ۱۹۹۸). مدیریت و بهره‌برداری صحیح از مراتع مستلزم شناسایی خصوصیات گونه‌های محیطی شکل‌دهنده و تعیین عوامل مؤثر بر پرآکتش آنها می‌باشد (آذری‌نژاد و همکاران، ۱۳۸۲). پوشش گیاهی در منطقه آینه تمام نمای خصوصیات روشگاهی است (سهرابی، ۱۳۸۳). با توجه به مفهوم زنجیره غذایی، گونه‌ها در امتیاد یک دستگاه محلی متغیر در محیط‌زیست به‌صورت توزیع‌شده‌اند. برای مثال، تغییر می‌کند (Whittaker، ۱۹۵۶). هنگامی که دانه اکولوژیکی یک گونگان نشانه شود، حضور گونه در یک روشگاه ویژه با تغییر شرایط روشگاهی (خاکی و اقلیمی) آن قابل پیش‌بینی است و برخور یک می‌توان با حضور یک گونه در یک روشگاه به‌طور غیرمستقیم به شرایط روشگاهی آن پی برد (Wang، ۲۰۰۰). گونه‌های یک روشگاه با توجه به درجه خوش‌خوراکی و نسب آنها در تأمین علفه مورد نیاز دام‌های کشور در مناطق و همچنین به‌منظور درآموز و کسب مهارتی‌های زیادی در مدیریت مرتعی می‌باشند. تحقیقات در مراحل رشته اقلیمی مازدنان نشان داد که در علل‌های حاضر و پایدار با کاهش مواد غذایی ابتدا گراس‌ها جایگزین پهن‌برگ‌ها علفی شده و در مرحله بعدی پوشه جایگزین گراس‌ها می‌شود (آمل/هی و همکاران، ۱۳۸۶). گونه‌ها
همهی پزشک و همکاران

می‌توانیم این تغییرات را در pH خاک (برابر با pH محاسبه شده بر اساس متوسط نتایج گروه‌های مختلف و تکنیک‌های به مصرف‌کننده‌ها پیش‌چبیس داده‌ها در پوستی اینهای، (Werner and Platt, 1976) و یا میکرو‌میکرو تغییرات می‌فرماهند (Andrus et al., 1983) نظریه‌ای که پوستی اینهای، (Bragazza, Dahl, 2007) را تعریف کنیم. این تغییرات می‌فرماهند که سطح pH خاک باعث کاهش pH خاک می‌شود. (Minchin and Oksanen, 2002)

افزایش pH خاک در به‌دست‌آوردها و توجه به‌سیاسی را به مدل‌سازی نشان می‌دهد. پتر کارکش گونه‌های گیاهی براتکخته است. تغییرات pH خاک و تغییرات pH خاک و گونه‌های گیاهی در تغییرات آسیابی Giannini et al., 1997) اکاپوزیکی و توزیع جغرافیایی گونه‌ها بر اساس نیازمندی آنها (Minchin and Oksanen, 2002)

2011, دامنه‌های شناخته شده پزشک و همکاران، خصوصیات حساسیتی می‌تواند براساس پهلوان رابطه خاک و گونه‌های گیاهی می‌باشد (آذریوند و همکاران 2012). خصوصیات ماده آلل، نیتریوزن، بافت، گچ خاک و ارتفاع از سطح دریا (جهانی و همکاران 2014). بافت خاک و ماده اکنونی سطح دریا (Jafari et al., 2004) ارتفاع از سطح دریا و جهت جغرافیایی و (Jafari et al., 2004) ارتفاع از سطح دریا، داستان زمین‌شناسی، جهت جغرافیایی، منطقه آب فاصله استرس، عمق خاک را می‌توان به‌عنوان مؤثر در پرکشت گونه‌های گیاهی و مهمترین خصوصیات خاک مؤثر در تغییرات پیش‌چبیس رویش در شرایط مطالعه خود تحقیق داده‌ها.

آلاین ایلیا سیستمیکی گونه در اکولوژی همراه با شرایی که برای داده‌های منحنی سیستمیکی گونه‌ها می‌توانند مورد استفاده قرار گیرند. تاکنون،

اکورپه‌هایی که برای داده‌های منحنی سیستمیکی گونه‌ها می‌توانند مورد استفاده قرار گیرند. تاکنون،

نازی‌های داده است

(Andrus et al., 1983) استفاده از تغییرات pH برای داده‌های تغییرات با کمکی از الکتروشتاب‌های مختلف، پیش‌روی در علم pH Lawesson, Minchin and Oksanen, 2002) نظریه پوستی گیاهی به‌عنوان می‌سازد.

(Andrus et al., 1983)

یک جزئی محیطی اغلب یافته در دره‌های می‌توان به دلیل اهمیت

2 Huisman, Olff and Fresco

3 Generalized Liner Model

47
این موضوع هدف این مطالعه به دست آوردن مقدار بهینه و دامنه اکولوژیک گونه‌ها با بررسی عکس عمل گونه‌های به‌نرگ علیفی منطقه مورد مطالعه با توجه به خواص فراوانی و وقوع این گونه‌ها در کشور به متغیرهای محیطی با استفاده از تابع HOF و روش DCA بوده است.

مواد و روش

منطقه مطالعه شده

منطقه مورد مطالعه در شمال ایران استان مازندران شهرستان نور و در جوزه آبخیز گلندرود در ۳۴°۸۲ تا ۳۵°۰۳ عرض شمالی و ۱۴۹°۵۱ تا ۱۵۱°۵۱ طول شرقی واقع شده است. این بخش از منطقه کوه‌رودهایی در اقلیم ناحیه خشک خوزستانی با کوه‌رودهای کوه‌های مرکزی مربوط به حداقل ارتفاع آن ۱۹۰۰ متر و عأماکه ارتفاع آن ۲۳۰۰ متر از سطح دریا و دلیل دریا انتقال آن ۶۰۰ میلی‌متر می‌باشد. این منطقه به جای استفاده از دستگاه‌های هوشمندانه است. بنا برای بررسی‌های آن و هوایی در این پژوهش از داده‌های امکار است. این استخراج از جمهوری چهارم، جمهوری گرگان، کشور استفاده شده است.

شکل ۱- موقعیت منطقه گلندرود
روش تحلیل

در مطالعه حاضر به توجه به نقشه توبوگرافی با مقیاس 1/۲۵۰۰ و عملیات صحرایی و پیماش زمینی بر مبنای عوامل طبیعی و عوامل توبوگرافی، تیپ‌های رویشی گونه‌های مورد مطالعه بر اساس مطالعات قلمی نیا (۱۳۸۵) مشخص شد. سپس در تیپ‌های رویشی گونه‌های مورد مطالعه و همچنین در امتداد دامنه با در نظر گرفتن طبقات ارتفاعی، شبپ و جهت دامنه، نمونه‌هایی از پوشش گیاهی به‌صورت تصادفی-سیستماتیک با استفاده از ترانسکت در هر طبقه ارتفاعی که به فاصله ۱۵ متر به موانع از همدیگر قرار داشتند و استقرار ۳ پالت یک مروربندی در امتداد هر ترانسکت که به فاصله ۱۵ متر از یکدیگر (بر اساس اختلاف ارتفاع) (با استفاده از GPS) قرار داشتند؛ انجام شد. سپس در داخل هر پلات حضور و عدم حضور و همچنین درصد ناحیه پوشش گونه‌های گیاهی تعیین گردید (مصداقی، دوالی گیاهان به شرط علی و همچنین اینکه مواد آلی خاک در این عمق قرار گرفته و بیشتر فعالیت بیولوژیکی خاک در این قسمت است، نمونه‌گیری در این عمق انجام شد. تعداد ۱۵۳ نمونه خاک برداشتند به آزمایشگاه منتقل شده و در آزمایش‌های بس از آماده‌سازی نمونه‌ها، آزمایش‌ها لازم جهت تعیین آفت خاک (هیدرومتری، نیترژن (کجال)، کربن آلی (وانیلی بلک)، EC (با هدایت سنج) برحسین دستی زیمس بر متر)، pH (دستگاه Jenway مدل ۴۳۱۰ pH متر)، معدل مترم (۳۳۲ صورت گرفت (۸۵۱۰۷) Amiri et al., 2008).

لازم به ذکر است محل استقرار کلیه پلات‌ها (طول و عرض جغرافیایی) و ارتفاع از سطح دریا با استفاده از سیستم مکانیاب جهانی (GPS) مشخص شد. شبپ در محل هر پلات توسط دستگاه شبپ‌سنج و جهت نیز به‌صورت آزمایش توسط جهش‌سنج تعیین گردید.

همچنین برای بررسی ضخامت گونه‌های مورد مطالعه همیشه به متغیر جهت، روش‌های مختلفی برای تبدیل آزمون به یک متعارض ممکن استفاده کرد که در این مطالعه از رابطه زیر برای تبدیل جهت استفاده شد گرفته (Moisen and Frescin, 2002):

\[
\text{TRASP} = \frac{1 - \cos(\theta)}{2}
\]

که در آن \(\theta \) به معنی جهت پلات بر حسب درجه است. مقیاس TRASP از 0 تا 1 میانگین است و عدد 1 نشان دهنده گرمترین جهت (جنوب و جنوب غربی) و عدد 0 نشان دهنده سردترین جهت (شمال و شمال شرقی) است.
نتیجه‌گیری زیست‌بوم گیاهان/ دوره هفتم، شهره چهاردهم، بهار و تابستان ۱۳۹۸

برای بررسی اقلیمی (میانگین دما و بارندگی سالانه) به دلیل عدم وجود ایستگاه هواشناسی در منطقه موردطالعه از ایستگاه‌های هواشناسی جمشیدی، بلند، کرنسک و کجور استفاده گردید. برای مطالعه فلور جمع‌آوری گیاهان در اردبیل شده در سال ۱۳۹۲ از بخش‌های مختلف منطقه موردطالعه انجام شد. شناسایی نمونه‌های جمع‌آوری شده پس از خشک شدن با بهره‌گیری از نظیرکارنامه سازمان جنگل‌ها و مرتع کشور و با استفاده از منابع، فلور ایرانیکا، فلور ایران، رده‌بندی گیاهی، رستنی‌های ایران، فرهنگ نامه‌های گیاهان ایران و سایر منابع به‌طور دقیق انجام شد. پس از ثبت داده‌های حضور و عدم حضور گونه‌های مورد مطالعه و اندازه‌گیری متغیرهای محیطی، داده‌ها به صورت بانک اطلاعاتی در ذخیره و سپس جهت بررسی آشیان اکولوژیکی گونه‌های پهن‌پاگان علی‌های به‌وسیله Excel و پاینگ که رمزگذاری گونه‌های پهن‌پاگان علی‌های به‌وسیله DCA و پایینگ گونه‌های مورد مطالعه در طول eHOF (Huisman et al., 1993) HOF (Akaike, 1973) AIC استفاده شد. از مقداری مناسب منحنی یا منحنی عكس العامل گونه می‌باشد. در منحنی‌های عكس العامل تابع HOF گونه در مقدار ابتیمم دارای بیشترین کارکرد است. بعنی که در این گونه درازای بیشترین احتمال وقوع با فراوانی بر اساس مدل خاص می‌باشد. مدل‌های HOF شامل مدل (Gegout and Krizova, 2003) 1. مدل یک روتن معنی‌داری در زمان و مکان وجود ندارد.

\[y = M \left(\frac{1}{1 + e^{-x}} \right) \]

رابطه 2

2. مدل ۲ شامل روتن افراشی با کاهشی که در آن مقدار حداکثر برای کران بالایی است.

\[y = M \left(\frac{1}{1 + e^{-x}} \right) \]

رابطه 3

3. مدل ۳ شامل روند افراشی با کاهشی که در آن مقدار حداکثر زیر کران بالایی است.

\[y = M \left(\frac{1}{1 + e^{-x}} \right) \left(\frac{1}{1 + e^{-y}} \right) \]

رابطه 4

4. مدل ۴ افراشی با کاهش یا یک نرخ یکسان، منحنی پاسخ متقاون.

\[y = M \left(\frac{1}{1 + e^{-x}} \right) \left(\frac{1}{1 + e^{-y}} \right) \]

رابطه 5
فهیمه بازدار و همکاران

مدل ۵ افزایش و کاهش با نرخ‌های متغیر، منحنی پاسخ چوله‌دار.

\[
y = M \left(\frac{2}{1 + e^{b_1 x}} \right) \left(\frac{1}{1 + e^{b_2 x}} \right)
\]

رابطه ۲

که در این مدل‌ها \(x \) به ترتیب متغیرهای پاسخ و تبیینی، \(a \) و \(b \) پارامترهای تخمین‌زنده‌شده

\(M \) مقدار ثابت که بر اساس مقدار حداقلی است (برای فراوانی نسبی \(M = 1 \) برای درصد \(\alpha = 10^{-1} \). عدد نیبر (۷/۲۱۳) می‌باشد.

نتایج

با توجه به نتایج همبستگی بین متغیرهای مورد مطالعه و محور اول و دوم DCA که در جدول ۱ DCA نسبت به محور دوم، مقدیر خیلی بیشتر و قابل توجه بوده است. بنابراین برای ساده‌سازی در این مقاله از محور اول استفاده شد. در این محور همبستگی در تمام متغیرهای مورد بررسی به جز هدایت الکتریکی خاک معنی‌دار بود و موتور بین متغیرها در این محور به ترتیب چهار متغیر ارتفاع از صطح دریا، بارش، درجه حرارت، جهت دامنه‌ی پاشند. از انجایی که در دامنه‌ی شمالی البرز گردهای دما با ارتفاع از سطح دریا مشخص تر و قابل استفاده است و همچنین دما و ارتفاع و بارش هر سه در یک محور هستند، لذا از سه متغیر فقط دو متغیر ارتفاع و بارش در نظر گرفته شد. با ارتفاع از نظر کرشه به ترتیب متغیر در این محور که دارای همبستگی معنی‌داری بودند، به ترتیب متغیر اسیدیت، جهت دامنه، شبب دامنه، بارش و درجه حرارت بودند.
جدول 1- نمایانگر همبستگی هر متغیر با محور اول و دوم DCA

<table>
<thead>
<tr>
<th>متغیر</th>
<th>همبستگی با محور DCA1</th>
<th>همبستگی با محور DCA2</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>0.41</td>
<td>*0.27</td>
</tr>
<tr>
<td>جهت دامنه</td>
<td>0.72</td>
<td>*0.37</td>
</tr>
<tr>
<td>شب دامنه</td>
<td>0.69</td>
<td>*0.51</td>
</tr>
<tr>
<td>پارش</td>
<td>0.82</td>
<td>*0.39</td>
</tr>
<tr>
<td>درجه حرارت</td>
<td>0.86</td>
<td>*0.40</td>
</tr>
<tr>
<td>ارتفاع</td>
<td>0.83</td>
<td>*0.42</td>
</tr>
<tr>
<td>نیتروژن خاک</td>
<td>0.80</td>
<td>*0.36</td>
</tr>
<tr>
<td>هبادیت الکتریکی خاک</td>
<td>0.08</td>
<td>*0.06</td>
</tr>
<tr>
<td>کربن آلی خاک</td>
<td>0.04</td>
<td>*0.05</td>
</tr>
<tr>
<td>رس خاک</td>
<td>0.47</td>
<td>*0.50</td>
</tr>
<tr>
<td>سیلیت خاک</td>
<td>0.05</td>
<td>*0.06</td>
</tr>
<tr>
<td>شن خاک</td>
<td>0.04</td>
<td>*0.05</td>
</tr>
</tbody>
</table>

در دلیل چهار محور از متغیرهای اصلی به دست آمده از جدول 1 با استفاده از برآش‌های HOF آورده شده است.

** همبستگی معنادار با 0.05
*** همبستگی معنادار با 0.01

p<0.001* همبستگی معنادار با 0.001

* در دلیل چهار محور از متغیرهای اصلی به دست آمده از جدول 1 با استفاده از برآش‌های HOF آورده شده است.
شکل ۲- منحنی پاسخ هرگونه به متغیر ارتفاع

با توجه به شکل ۲، منحنی عکس العمل گونه‌های مورد مطالعه به متغیر ارتفاع این‌چنین است که درصد از گونه‌ها از مدل ۵ تبعیت می‌کنند، درصد از گونه‌ها از مدل ۳، ۱۹ درصد از مدل ۱۵، ۲ درصد از آن‌ها از مدل ۴ بیروی می‌کنند و تنها ۴ درصد (۱ گونه) از مدل ۱ تبعیت می‌کند و دارای منحنی صاف می‌باشد.

بنابراین گونه‌ها در رابطه با متغیر ارتفاع از سطح دربای بیشتر از مدل ۵ (نک نمای جوله دار) و بعد مدل ۳ (هنونای آستانه‌ای افزایش یا کاهشی) تبعیت می‌کنند.

شکل ۳- منحنی پاسخ هر گونه به متغیر بارش

همان‌طور که شکل ۳ نشان داده شد، منحنی عکس العمل گونه‌ها به متغیر مقدار بارش سالانه بهصورت دیل بود:

۵۴
فهرش بازی و همکاران

که ۳۱ درصد از گونه‌ها از مدل ۵، ۲۲ درصد از گونه‌ها از مدل ۴ پیرسی کرده و کوپی متقاوت دارند و ۱۹ درصد از آن‌ها از مدل ۳ و ۱۸ درصد از مدل ۱ تبعیت می‌کند و دارای منحنی صاف می‌باشند، بنابراین گونه‌های در رابطه با متغیر بارش بیشتر از مدل ۵ (نک نمای جولدار) و بعد مدل ۴ (نک نمای متقاوت) تبعیت می‌کند.

شکل ۲- منحنی پایه هرگونه به متغیر جهت دامنه

همان‌طور که شکل ۴ رفتار گونه‌های مودل‌برای رسی را به متغیر جهت دامنه نشان داده شد، ۴۳ درصد از گونه‌ها از مدل ۲ تبعیت می‌کند. ۳۲ درصد از گونه‌ها از مدل ۴ پیرسی کرده و کوپی متقاوت دارند و ۱۲ درصد از آن‌ها از مدل ۳ و ۱۲ درصد از آن‌ها از مدل ۱ تبعیت می‌کند و دارای منحنی صاف می‌باشند، بنابراین گونه‌ها در ارتباط با متغیر جهت دامنه، بیشتر از مدل ۲ (هنوز) و بعد از مدل ۴ (نک نمای مقتراو) پیروی می‌کنند.

در جدول ۲ تا ۴ مقادیر بهره و دامنه آکوستیک برای گونه‌های موردمطالعه و همچنین بهترین مدل برای داده‌برداری برای هرگونه از متغیرهای جهت دامنه، ارتفاع از سطح دریا و پارش که از مقادیر می‌باشد اطلاعات آکوئیک و مورفی (AICwii) به دست آمده است. پایه ورامد. ۵۵
جدول ۲: مقادیر بهره و دامنه اکولوژیک گونه‌ها مربوط به جهت دامنه

<table>
<thead>
<tr>
<th>گونه‌ها</th>
<th>بهره اکولوژیک</th>
<th>حداقل</th>
<th>حداقل‌کرکر</th>
<th>مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentilla argae</td>
<td>0/0/0.0/0.84</td>
<td>0/0.05</td>
<td>0/0.87</td>
<td>3</td>
</tr>
<tr>
<td>Poterium sanguisorba</td>
<td>0/0.5</td>
<td>-</td>
<td>0/0.98</td>
<td>1</td>
</tr>
<tr>
<td>Echinophora platyloba</td>
<td>0/0.99</td>
<td>0/0.89</td>
<td>0/0.98</td>
<td>4</td>
</tr>
<tr>
<td>Teucrium polium</td>
<td>0/0.79</td>
<td>0/0.98</td>
<td>0/0.98</td>
<td>2</td>
</tr>
<tr>
<td>Alyssum bracteatum</td>
<td>0/0.77</td>
<td>0/0.98</td>
<td>0/0.98</td>
<td>2</td>
</tr>
<tr>
<td>Onosma microcarpa</td>
<td>0/0.0</td>
<td>-</td>
<td>0/0.98</td>
<td>1</td>
</tr>
<tr>
<td>Ranunculus scleratus</td>
<td>0/0.0</td>
<td>-</td>
<td>0/0.98</td>
<td>1</td>
</tr>
<tr>
<td>Cirsiun vulgar</td>
<td>0/0.0</td>
<td>-</td>
<td>0/0.98</td>
<td>1</td>
</tr>
<tr>
<td>Medicago rigidula</td>
<td>0/0.86</td>
<td>0/0.91</td>
<td>0/0.97</td>
<td>4</td>
</tr>
<tr>
<td>Nepeta pungens</td>
<td>0/0.44</td>
<td>0/0.59</td>
<td>0/0.73</td>
<td>5</td>
</tr>
<tr>
<td>Vicia villosa</td>
<td>0/0.23</td>
<td>0/0.6</td>
<td>0/0.98</td>
<td>5</td>
</tr>
<tr>
<td>Sedum album</td>
<td>0/0.0</td>
<td>-</td>
<td>0/0.95</td>
<td>1</td>
</tr>
<tr>
<td>Galium verum</td>
<td>0/0.0/0.28</td>
<td>0/0.98</td>
<td>0/0.98</td>
<td>4</td>
</tr>
<tr>
<td>Stachys byzantina</td>
<td>0/0.5</td>
<td>0/0.98</td>
<td>0/0.98</td>
<td>2</td>
</tr>
<tr>
<td>Myosotis onomala</td>
<td>0/0.0</td>
<td>0/0.5</td>
<td>0/0.98</td>
<td>2</td>
</tr>
<tr>
<td>Taraxacum bessarabicum</td>
<td>0/0.5</td>
<td>0/0.98</td>
<td>0/0.98</td>
<td>2</td>
</tr>
<tr>
<td>Phlomis cancellata</td>
<td>0/0.0</td>
<td>0/0.98</td>
<td>0/0.98</td>
<td>2</td>
</tr>
<tr>
<td>Trifolium repens</td>
<td>0/0.0/0.38</td>
<td>0/0.98</td>
<td>0/0.98</td>
<td>3</td>
</tr>
<tr>
<td>Thymus kotschyanus</td>
<td>0/0.0</td>
<td>0/0.98</td>
<td>0/0.98</td>
<td>2</td>
</tr>
<tr>
<td>Polygonum aviculare</td>
<td>0/0.3</td>
<td>0/0.72</td>
<td>0/0.72</td>
<td>4</td>
</tr>
<tr>
<td>Plantago lanceolata</td>
<td>0/0.0</td>
<td>0/0.5</td>
<td>0/0.98</td>
<td>2</td>
</tr>
<tr>
<td>Mascari neglectum</td>
<td>0/0.0</td>
<td>0/0.95</td>
<td>0/0.95</td>
<td>2</td>
</tr>
<tr>
<td>Colchicum kotschyi</td>
<td>0/0.0</td>
<td>0/0.12</td>
<td>0/0.33</td>
<td>4</td>
</tr>
<tr>
<td>Campanula stevenii</td>
<td>0/0.8</td>
<td>0/0.12</td>
<td>0/0.33</td>
<td>5</td>
</tr>
<tr>
<td>Astragalus mollis</td>
<td>0/0.0</td>
<td>0/0.5</td>
<td>0/0.9</td>
<td>4</td>
</tr>
<tr>
<td>Achilla millefolium</td>
<td>0/0.0</td>
<td>0/0.98</td>
<td>0/0.98</td>
<td>2</td>
</tr>
</tbody>
</table>
جدول 2- مقدار بهبود و دامنه آکوئورگن کونه‌های مورد مطالعه برای منگیت ارتفاع از سطح دریا (متر)

<table>
<thead>
<tr>
<th>کونه‌ها</th>
<th>حداقل</th>
<th>حداقب</th>
<th>مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentilla argae</td>
<td>222/5</td>
<td>397/5</td>
<td>5</td>
</tr>
<tr>
<td>Poterium sanguisorba</td>
<td>241/7</td>
<td>479/5</td>
<td>5</td>
</tr>
<tr>
<td>Echinophora platyloba</td>
<td>218/2</td>
<td>295/5</td>
<td>5</td>
</tr>
<tr>
<td>Teucrium polium</td>
<td>212/1</td>
<td>291/5</td>
<td>5</td>
</tr>
<tr>
<td>Alyssum bracteatum</td>
<td>218/1</td>
<td>249/16</td>
<td>5</td>
</tr>
<tr>
<td>Onosma microcarpa</td>
<td>238/7</td>
<td>527/5</td>
<td>3</td>
</tr>
<tr>
<td>Ranunculus scleratus</td>
<td>212</td>
<td>257/5</td>
<td>5</td>
</tr>
<tr>
<td>Cirsium vulgar</td>
<td>282/79</td>
<td>282/79</td>
<td>294/75</td>
</tr>
<tr>
<td>Medicago rigidula</td>
<td>212</td>
<td>275/95</td>
<td>3</td>
</tr>
<tr>
<td>Nepeta pungens</td>
<td>238/1</td>
<td>237/18</td>
<td>5</td>
</tr>
<tr>
<td>Vicia villosa</td>
<td>240/0</td>
<td>227/89</td>
<td>4</td>
</tr>
<tr>
<td>Sedum album</td>
<td>232/42</td>
<td>229/75</td>
<td>3</td>
</tr>
<tr>
<td>Galium verum</td>
<td>221/82</td>
<td>247/5</td>
<td>3</td>
</tr>
<tr>
<td>Stachys byzantina</td>
<td>211</td>
<td>212</td>
<td>297</td>
</tr>
<tr>
<td>Myosotis onomala</td>
<td>211</td>
<td>247</td>
<td>3</td>
</tr>
<tr>
<td>Taraxacum bessarabicum</td>
<td>212</td>
<td>1</td>
<td>297</td>
</tr>
<tr>
<td>Phlomis cancellata</td>
<td>218/3/4</td>
<td>224/22</td>
<td>4</td>
</tr>
<tr>
<td>Trifolium repens</td>
<td>1649/6</td>
<td>223/12</td>
<td>4</td>
</tr>
<tr>
<td>Thymus kotschyanus</td>
<td>2288/9</td>
<td>2288/9</td>
<td>4</td>
</tr>
<tr>
<td>Polygonum aviculare</td>
<td>263/68</td>
<td>263/68</td>
<td>291/27</td>
</tr>
<tr>
<td>Plantago lanceolata</td>
<td>267/31</td>
<td>267/31</td>
<td>267/31</td>
</tr>
<tr>
<td>Mascari neglectum</td>
<td>251/0/3</td>
<td>260/1/19</td>
<td>3</td>
</tr>
<tr>
<td>Colchicum kotschyi</td>
<td>249/1/3</td>
<td>249/1/3</td>
<td>249/1/3</td>
</tr>
<tr>
<td>Campanula stevenii</td>
<td>268/68</td>
<td>268/68</td>
<td>268/68</td>
</tr>
<tr>
<td>Astragalus mollis</td>
<td>239/7</td>
<td>239/7</td>
<td>239/7</td>
</tr>
<tr>
<td>Achilla millefolium</td>
<td>212</td>
<td>212</td>
<td>212</td>
</tr>
</tbody>
</table>
جدول ۴- مقدار بهبده و دامنه آکولوژیک گونه‌های موردطالعه برای‌ment مقدار بارش (میلی‌متر)

<table>
<thead>
<tr>
<th>گونه‌ها</th>
<th>حداقل</th>
<th>بالا</th>
<th>مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentilla argae</td>
<td>۴۶۳/۳۷۷</td>
<td>۵۰۱/۱۸۷</td>
<td>۵۳۸/۹۹</td>
</tr>
<tr>
<td>Poterium sanguisorba</td>
<td>۴۶۳/۶۶۶</td>
<td>۵۳۱/۴۸</td>
<td>۵۶۵/۲۲</td>
</tr>
<tr>
<td>Echinophora platyloba</td>
<td>۵۷۳/۳۹۳</td>
<td>۵۷۸/۹۹</td>
<td>۵۸۸/۹۹</td>
</tr>
<tr>
<td>Teucrium polium</td>
<td>۵۴۰/۸۸</td>
<td>۵۴۴/۴۴۳</td>
<td>۵۷۳/۷۳</td>
</tr>
<tr>
<td>Alyssum bracteatum</td>
<td>۵۷۹/۸۵۵</td>
<td>۵۷۹/۷۵۵</td>
<td>۵۸۸/۲۸</td>
</tr>
<tr>
<td>Onosma microcarpa</td>
<td>۴۶۵/۳۹۸</td>
<td>۵۲۸</td>
<td>۵۳۱/۲۸</td>
</tr>
<tr>
<td>Ranunculus scleratus</td>
<td>۴۴۳</td>
<td></td>
<td>۴۴۳</td>
</tr>
<tr>
<td>Cirsiun vulgar</td>
<td>۴۸۳</td>
<td></td>
<td>۴۸۳</td>
</tr>
<tr>
<td>Medicago rigidula</td>
<td>۵۳۳/۳۴۲</td>
<td>۵۳۱/۴۶۹</td>
<td>۵۳۸/۹۹</td>
</tr>
<tr>
<td>Nepeta pungens</td>
<td>۴۹۴/۵۰۰</td>
<td>۵۲۹/۰۸</td>
<td>۵۵۲/۲۸</td>
</tr>
<tr>
<td>Vicia villosa</td>
<td>۵۰۲/۸۱۵</td>
<td>۵۲۲/۳۱۵</td>
<td>۵۲۵/۵۵</td>
</tr>
<tr>
<td>Sedum album</td>
<td>۴۸۴</td>
<td></td>
<td>۴۸۴</td>
</tr>
<tr>
<td>Galium verum</td>
<td>۴۸۳</td>
<td></td>
<td>۴۸۳</td>
</tr>
<tr>
<td>Stachys byzantina</td>
<td>۵۰۲/۷۱۵</td>
<td>۵۲۸/۹۹</td>
<td>۵۲۸/۹۹</td>
</tr>
<tr>
<td>Myosotis onomala</td>
<td>۴۸۳</td>
<td></td>
<td>۴۸۳</td>
</tr>
<tr>
<td>Taraxacum bessarabicum</td>
<td>۴۸۴</td>
<td></td>
<td>۴۸۴</td>
</tr>
<tr>
<td>Phlomis cancellata</td>
<td>۴۸۸/۳۸۵</td>
<td>۵۳۳/۵۳۱</td>
<td>۵۳۸/۳۱</td>
</tr>
<tr>
<td>Trifolium repens</td>
<td>۴۷۷/۸۴۵</td>
<td>۵۷۸/۰۴۵</td>
<td>۵۸۳/۸۱</td>
</tr>
<tr>
<td>Thymus kotschyanus</td>
<td>۴۸۲</td>
<td></td>
<td>۴۸۲-۵۱۸/۹۴</td>
</tr>
<tr>
<td>Polygonum aviculare</td>
<td>۴۶۸/۸۴۲</td>
<td>۵۱۰/۵۳۱</td>
<td>۵۳۵/۵۳</td>
</tr>
<tr>
<td>Plantago lanceolata</td>
<td>۴۸۳</td>
<td></td>
<td>۴۸۳</td>
</tr>
<tr>
<td>Muscari neglectum</td>
<td>۴۷۸/۷۷۷</td>
<td>۴۹۸/۴۸۷</td>
<td>۵۱۸/۷۴</td>
</tr>
<tr>
<td>Colchicum kotschyi</td>
<td>۴۸۲/۴۸۲</td>
<td>۵۰۱/۴۴۲</td>
<td>۵۱۸/۷۴</td>
</tr>
<tr>
<td>Campanula stevenii</td>
<td>۴۸۲/۴۱۲</td>
<td>۴۸۲/۴۱۲</td>
<td>۴۹۹/۵۵</td>
</tr>
<tr>
<td>Astragalus mollis</td>
<td>۴۸۳/۲۸۰</td>
<td>۴۸۵/۲۸۰</td>
<td>۴۹۹/۵۵</td>
</tr>
<tr>
<td>Achilla millefolium</td>
<td>۴۸۳/۸۴۲</td>
<td>۴۸۳-۴۹۸/۵۷</td>
<td>۴۳۸</td>
</tr>
</tbody>
</table>

۵۸
بحث و نتیجه‌گیری

با توجه به بررسی‌های بعمل‌آمده مؤثرترین متغیرها در فراوانی گونه‌های پهن‌برگ علفی منطقه موردمطالعه با ترتیب چهار متغیر ارتقاء از سطح دریا، بارش، درجه حرارت، جهت دامنه بودند که با یافته‌های گذشته تحقیقات (طاقیان، ۱۳۹۲؛ محتشمی و همکاران، ۱۳۸۳) معمولی و همکاران (۱۳۹۲)

که در دمیدارا ارتقاء، شیب، جهت و میزان بارش را مؤثرترین فاکتور معرفی نمودند، همکاری دارد. با توجه به این‌چهار مؤثر می‌توان دریافت که متغیرهای توبوگرافی نسبت به قبیه متغیرهای مورد بررسی در پراکنش گونه‌های پهن‌برگ علفی مؤثر بودند. همان‌طور که مطالعات گذشته نشان دادند (Enright et al., 2005)، در این پژوهش مهم‌ترین متغیر متغیر ارتقاء از سطح دریا شناخته شد که از مهم‌ترین عوامل است که با تأثیر بر میزان و نوع بارنگی، دما تبخیر، تعرق، شدت تشعشعات

Barnes، 1998) ارتقاء از سطح دریا هنگامی که با محدودیت‌های اقلیمی همراه می‌شود را می‌توان به علت عامل محدود کننده در استقرار و رشد گیاهان معرفی کرد (آذری‌پور، ۱۳۷۱) عامل اساسی تغییرات بوش گیاهی را در مناطق گوهستانی، ارتقاء از سطح دریا معرفی می‌کند. همچنین این نتایج با Villers می‌تواند در این زمینه (2005)، پیری صحرایگرد و همکاران، 1390-1391، مشارکت در این که منطقه مورد مطالعه در بوش گیاهی شناخته شده و

با توجه به نتایج به‌هم‌آمده، عوامل توبوگرافی (ارتفاع از سطح دریا، جهت جغرافیایی) نقش مهمی نسبت به سایر عوامل دارد و می‌توان گفت عوامل دیگر را به‌نحوی تأثیر قرار می‌دهند که این یافته‌ها با نتایج مطالعه (محتشمی و همکاران، ۱۳۸۳) مطابقت دارد. از ۲۶ گونه پهن‌پوستگان علفی مورد مطالعه تعداد ۹ گونه دارای منحنی پاییز مЎدنی تک‌برگ بودند و از مدل ۵ تعبیر کردند و دارای مقادیر بینه ۲۸۷۵ تا ۲۱۴۲ داشتند. تعداد ۴ گونه دارای منحنی پاییز تک نمایی و متقارن (مدل ۲) با مقدار بینه ۲۳۲-۲۸۶ متر، تعداد ۳ گونه

از مدل ۲ با مقدار بینه ۲۱۷۵-۲۳۲۵ متر و تعداد ۳ گونه از مدل ۳ با مقدار بینه ۲۱۷۵ تا ۲۸۷۵ متر به وسیله اصلی (۲۳) در پراکنش گونه‌های مورد مطالعه در منطقه گنبدروم فاکتورهای اقلیمی (بارش و درجه حرارت) بود. معمولی و همکاران (1383) عامل اقلیمی بارندگی را یکی از عوامل مؤثر در اثرگذاری و پراکنش بوش گیاهی در منطقه خوی معرفی کردند. این‌را متأثر از عوامل ارتقاء از سطح دریا دانست. با توجه به تغییرات اقلیمی در

چهار، اهمیت شکل‌پذیری ریختی در گیاهان بیش از پیش آشکارشده است. تغییرات زیاد شرایط
مشابه حفاظت زیست بوم گیاهان/ دوره هفتم، شماره چهاردهم، بهار و تابستان 1398

اقيمتی می‌تواند باعث تغییر در نوع پوشش گیاهی (در سطح کلان) شده و موجب تغییر در
عکس‌العمل بین پوشش گیاهی و انفس (Parmesan and Yohe, 2003)، و (Tsui et al., 2004).
ارتفاع تغییر می‌کند و به‌خوبی گردیدهای خاک‌زایی را تحت تأثیر قرار می‌دهند (2004).
گونه‌های پیشین برخی علفی در منطقه موردطالعه در رابطه با تغییر بارش بیشتر از مدل 2 (نکت نام)
چوله‌دار) و بعد مدل 4 (نکت نام متقاضی) پیروی می‌کنند. در رابطه با تغییر درجه حرارت گونه‌های
بیشتری از مدل 2 (هیپاو)، بعد مدل 4 (نکت نام متقاضی) تبعیت می‌کنند. تغییر مهم دیگر جهت
دامنه بود که جهت دامنه در اکثر مطالعات به‌عنوان یک عامل مهم در ایجاد تغییر در اکوسیستم
مطرح‌شده است (Bale et al., 1998). جهت با تأثیر روی رطوبت، حالت‌ای عمق خاک تأثیر
یافته است. (Tsui and Small, 2005)، نتایج عکس عمل
گونه‌های پیشین برخی علفی حوزه آبخور گلنرود نشان داد که بیشتر بیش از مدل 2 (هیپاو) و بعد از
همین‌گونه مکاتبه‌های (DCA1) و مستقاد با پراکنش گونه‌های پیشین برخی علفی داشت که همین
مطلب‌ها در جهت‌های جنوبی و غربی پراکنش بیشتری دارد. جهت ازجمله عاملی است که
برخی تغییر در انتقال اکوسیستم مؤثر است (معمومی و همکاران، 1392). جهت جغرافیایی با تأثیری که
بر میزان اب در دسترس گیاه، میزان نور دریافتی توسط گیاه دارند در پراکنش گیاهی
نتش می‌تواند افرا می‌کند. به‌عنوان مثال، دامنه‌های گیاهی نسبت به دامنه‌های شما به دارای شربت
کمتری بوده و این امر باعث می‌شود که گونه‌های استقرار یافته در دو دامنه افزایش بخاطی باهم
متفاوت باشد مقدمت (Pinke et al., 1394). همچنین گونه و همکاران (2010)
و مثابین عامل پیوگرافی در تفکیک رویشگاه‌ها و نیز اثرگذاری در توزیع گونه‌های گیاهی شناسایی
برنامه‌های خاک و شبیه دامنه موردبررسی در مقایسه با دیگر تغییرهای زمین‌شناسی کنترل کرده. تغییرهای خاک و شبیه
دامنه موردبررسی در مقایسه با دیگر تغییرهای زمین‌شناسی کنترل کرده. تغییرهای خاک و شبیه
دهای آبکنارکی، شبیه دامنه، اسپیدیته، درصد رس و همکاران (1393)، در مطالعه خود از
گونه‌های پیشین در منطقه موردطالعه مبنا تأثیر بودند. قلی‌زاد و همکاران (1393) در مطالعه خود از
بررسی عوامل محیطی و مدیریتی بر گسترش تیپ‌های گیاهی به این نتیجه رسیدند که در میان عوامل
خاکی تأثیرگذار بر پراکنش جمعیت گیاهی در سالار کردستان، عوامل فیزیکی خاک تأثیر بیشتری
دارند و خصوصاً شیمیایی خاک در پراکنش و استقرار جمعیت گیاهی در منطقه موردطالعه آن‌ها
تأثیری ندارند که این یافته‌ها با نتایج این تحقیق مطابقت دارد. فهم شناخت و درک شاخص عوامل
محیطی در یک منطقه معینی می‌تواند، گونه‌های سازگار با شرایط مشابه جهت ایجاد اصلاح و توسعه منابع را معرفی نماید (Jafari et al., 2004). با این حال و نشان نموده که روایت گونه و محیط بر اساس اندازه‌گیری‌های نسبتاً ساده از منیفستاتیو گونه‌ای است که به فرض می‌شود، بیاید رشد و عملکرد گونه‌ها را تأثیر قرار می‌دهد؛ اما حتی قوی‌ترین همکاری هم نمی‌تواند قطعی فرض شود. بیان روابط بین منیفستاتیو محیطی و عکس عمل گونه‌ها نشان می‌دهد که برای تفسیر مشاهدات میدانی است (علی‌اکبری و همکاران، 1325). با توجه به بررسی‌هایی که انجام‌شده‌اند، آمارگری متغیر اثرگذار در فاواولی گونه‌های پهن‌برگ غلی از منطقه مورد واحدهای ارتفاع از سطح دریا، درجه حرارت و جهت دامنه بودند. شکل عکس‌العمل گونه‌ها پهن‌برگ نسبت به این متغیره‌های متفاوت، ولی عمدتاً با مدل 3 و مدل 4 تطبیق کردنده که نشان دهنده فشار عوامل محیطی بر بخی گونه‌های پهن‌برگ مثل Trifolium repens می‌باشد.

نتایج به‌دست‌آمده از نمرات و معنی دار DCA نشان دهنده اهمیت کوتیر منیفستاتیو خاکی و شیب DCA است. در مقایسه با دیگر منیفستاتیو‌ها است که این بیان می‌توان به منیفستاتیو‌های کلی، شبی دامنه، اسپیتیشن، درصد رسو و نیتروژن خاک اشاره کرد که در پرکش اکثر گونه‌های پهن‌برگ در منطقه مورد واحدهای پهن‌برگ (1343)، در مطالعه خود از بررسی عوامل محیطی و مدیریتی بر گسترش گیاهی کليه به این ترتیب رسد که در میان عوامل خاکی تأثیرگذار بر پراکنش جوامع گیاهی در سرال کردستان، عوامل افزایش خاک تأثیر بخش دارد و خصوصیات شیمیایی خاک و استقرار جوامع گیاهی در منطقه مورد واحدهای پهن‌برگ بود. (مدل 2) و کمیت عکس عمل به‌صورت معنی‌دار متفاوت بود.

به‌طور کلی پراکنش گونه‌های گیاهی با توجه به خصوصیات منطقه روش، نیازهای اکولوژیکی، دامنه به‌دست‌آمده، تحت تأثیر توپوگرافی و اقلیمی عوامل خاکی قرار دارد. نتایج به‌دست‌آمده در این مطالعه نشان می‌دهد که همانند نتایج دیگر، این منابع توپوگرافی و اقلیمی در پراکنش گونه‌های پهن‌برگ غلی از انتگرالات بوده و به‌طور که پراکنش گونه‌ها را تحت سطح خود داشته است. نتایج این مطالعه نشان می‌دهد که پهن‌برگ در حوزه پوشش گیاهی به‌خصوص گونه‌های گیاهی به‌طور معمول گونه‌های گیاهی که ارتفاع لتانی و دارای بیش از حد دامنه مورد نظر هستند در منطقه مورد ارزیابی همکاری با دیگر جهتی مورد تأیید است. منطقه DCA و HOF می‌تواند گفت که بررسی آشیان اکولوژیکی گونه‌ها با استفاده از تابع هوشمند و روش رستگاندی
شتریه حفاظت زیست بوم گیاهان/ دوره هفتم، شماره چهاردهم، بهار و تابستان 1398

یک روش بررسی کارآمدی می‌باشد. طوری که علاوه بر تعبیه دانه و اپتیمات اکولوژیک گونه‌ها در یک مطالعه سنین اکولوژی می‌توان به نوع مدل‌بری اعمال‌شده بر گیاهان را از طریق مطالعه شکل عکس عمل گونه‌ها نسبت به متغیرهای محیطی بی پرده که در مدل‌بری و اصلاح مراتع تأثیر پزشی‌بی دارد.

منابع
آذری‌نژاد، ج. ۱۳۷۶. بررسی پوشش گیاهی و خاک در رابطه با واحدهای زمومفلوژی در دامغان. مجموعه مقالات سمینار بررسی مناطق بیابانی و کویری ایران، مرکز تحقیقات مناطق کویری و بیابانی ایران جلد اول ص ۱۰۰.
آذری‌نژاد، ج، جعفری، م، مقدم، م، جلیلی‌ع، زارع چاهوکی، م، ۱۳۸۲. بررسی تأثیر خصوصیات خاک و تغییرات ارتفاع بر پراکنش دو گونه درمنه (Artemisia) مجله منابع طبیعی ایران ۵۶ (۲) ۱۳۸۲-۱۳۸۰.

امان‌اللهی، ج، دیانی، نیلکی، ق، صالحی، ع، سهرابی، م. ۱۳۸۲. روند توالی در سه روشگاه مرتعی و ارتباط آن با خصوصیات خاک (مطالعه موردی: پارک ملی لر)، مجله علمی پژوهشی مرتع، ۲ (۱) ۱۳۸۲.

پیری صحرایی، ج، آذری‌نژاد، ج، زارع چاهوکی، م، تالایی‌ع، پژوهشگری، ق، قمی، س. ۱۳۹۰. بررسی عوامل محیطی مؤثر بر پراکنش جنگلی گیاهی حوضه آبخیز طالقان سیلیکا، نشریه منابع طبیعی ایران (۱) ۱۹۹۰:

تقویه صحرایی، م، بحري‌تیمی، غ، رستگار، ش. ۱۳۸۷. اثر عوامل محیطی بر پراکنش گونه‌های مرغی در منطقه هزارچریب پهلو به (مطالعه موردی: مراتع سرخ‌گریمه). مجله کشاورزی و منابع طبیعی، ۱۵ (۴) ۱۹۹۵-۱۹۹۷.

تقویه پوری، غ، رستگار، ش. ۱۳۸۹. بررسی نقش فیزیوگرافی بر روی پوشش گیاهی با استفاده از سامانه اطلاعات جغرافیایی (مطالعه موردی: مراتع هزارچریب بهشهر-ماساندران). مجله مرتع ۴ (۲) ۱۹۸۷:

جعفری، م، زارع چاهوکی، م، طویلی‌ع، کهنی‌د، ا. ۱۳۸۵. بررسی رابطه خصوصیات خاک با پراکنش گونه‌های گیاهی در مراتع استان قم، مجله پژوهش ساردنگی ۱۹ (۲) ۱۳۸۵: ۱۰۱-۱۱۰.
فلیچ ج.، ۱۳۸۵. گزارش تحقیقات ارزیابی مراتع در اقلیم‌های مختلف، مؤسسه تحقیقات جنگل‌ها و مرتعه. ۱۰۰ ص.
قلی نژاد، ب.، جعفری، م.، زارع چاهوکی، م.ع.، آذری‌پورنود، ج.، یزدانی، ج.، ۱۳۹۳. بررسی اثر عوامل محیطی و مدیریت بی‌بیشی گیاهی (مطالعه موردی مرتع سالال استان کردستان). مجله مرتع و آبخزداری، ۱۶ (۲)؛ ۲۷۳-۲۸۸.

معتمدی، ج.، علی‌آباد، ف.، شیبانی کرکم‌آ.، کیوین بهجو، ف.، قریشی، ر.، ۱۳۹۲. بررسی ارتباط عوامل محیطی و شدت چرای دام با یوشی گیاهی در استان تربت حیدریه مرتعی خوی. مجله حفاظت زیست‌محیطی گیاهان، (۳)؛ ۲۶-۳۰.

مقدم، م.، ۱۳۸۴. گیاهان کوهستانی خاک روز. انتشارات دانشگاه تهران. جاب، ۱۰۱ ص.

میر داوودی، ح.، زاده‌آبادی، ج.، ۱۳۸۳. بررسی میزان مقاومت به شری خاک در سه گونه گیاه شوربند، مجله تحقیقات مرتع و یاپان ایران، ۱۱ (۴)؛ ۴۷۵-۴۷۷.

Tsui, Ch-Ch., Zueng-Sang Ch. and Chang-Fu H. 2004. Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan, Geoderma 123:131-142.

