تیپهای جنگلی ذخیره گاه سرخدار (Taxus baccata L.) و تجزیه و تحلیل آن‌ها در ارتباط با متغیرهای محیطی

محمد درزی، همین روانبخش، علیرضا مشکی، مجتبی امیری، محمد کیانیان

دانشجوی کارشناسی ارشد رشته جنگل‌سازی و اکولوژی جنگلی، گروه جنگل‌داری، دانشکده کویرشناسی، دانشگاه سمنان

استادیار پژوهشی مؤسسه تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات، آموزش و تربیت، مشهد، تهران

استادیار، گروه جنگل‌داری، دانشکده کویرشناسی، دانشگاه سمنان، سمنان

تاریخ دریافت: ۱۳۹۷/۱۲/۰۳
تاریخ پذیرش: ۱۳۹۷/۰۳/۲۴
تاریخ شرکت خاصی

چکیده

درخت سرخدار از مجموعه گونه‌های سرخ یکی از جنگل‌های شمال و شمال غرب ایران است که به صورت تکثیری با اکلاهی انتشار دارد. ذخیره‌گاه سرخدار گروه گیاه‌شناسی و جنگل‌سازی بسته به مطالعات زیادی در آن سروت و تغییراتی در آن این جنگل‌سازی و ترکیب اصلی و تأثیر اکولوژی بر پراکنش درختان سرخدار و تیپهای جنگلی مورد بررسی قرار گرفت. آماربرداری با یک‌شاخه و ۲۰ قطعه نمونه در میان ۱۱۰ برگ و در میان اصلی فازهای نمونه برداشت. ۲۰ متری خطوط تراکم‌ها در حضور تعداد مختلف انجام شد. برای تظیم تیپهای گیاهی آزمایش علائم تازه در آزمایشگاه و در آزمایشگاه R.A.T.WINSAN، NOVA و ANOVA و پاسخ رابطه سرخدار با استفاده از سنتیدنی CCA انجام شد. پانورامای بخش‌اندیش، سرخدار، زمان بیشتر و سرخدار زمان کمتر در تحلیل کیفیت مطالعه شده، تیپهای سرخدار در ۱۸ تیپ گیاهی متعادل شدند. تیپهای سرخدار در طبقه‌بندی می‌بایست یکی از تیپ‌های اصلی و دیگر پاسخ‌های اکولوژی تازه‌بایلی در موقعیت می‌باشد. نتایج این پژوهش نشان داد که سلسله‌های سرخدار در ارتفاعات منطقه، با افزایش شیب، قطر متوسط درختان کاهش یافته است.

h.ravanbakhsh@rifr.ac.ir

نویسنده مسئول: h.ravanbakhsh@rifr.ac.ir

237
درخت سرخدر گونه‌های بالارش و از سوزنی برگان انگشت شومی بومی چندگلی‌های شمال ایران و بومی اروپا، قفقاز، شمال آفریقا و چندگلی‌های شمال ایران است Carpinus (زارع، 1380) که در چندگلی‌های معمول به همراه گونه‌های راش (Fagus spp.)، مزرع Shaheen et al., (Thomas, 2003) بر روی و نیلوئل (Abies spp.) نواد (spp.)، نازدیک گونه‌های چندگلی‌های همراه با گونه‌هایی از نیلوئل و کاج دکل‌دانه است (Cyclamino repandi-Taxetum) در ساردنیای ایتالیا جامعه سرخدر-سیکلنیم (2015). در سال گونه‌ها غالب درختی آن است، تأمیر برد (Relic) بعنوان یک جامعه بازمانده (baccatae) شده است (farris et al., 2012). سرخدر گونه‌ای سایه‌پسند است و در راسته‌های با نیلوئل‌های در سایه شدید هم به علت ناکافی رشد خود ادامه می‌یابد، هم‌اکنون که تاج بسته درختان راش بر دشت 190 میلیون سال و مربوط به دوران سوم زمین‌شناسی است، اما در دوره‌های بعدی توده‌های آمیخته سرخدر یا گونه‌ها راش و مزرع گرفته‌شده (مصدق، 1364). چندگل‌های سرخدر بینا به دلایل اکولوژیکی در سبزیاری از نقاط جهان به‌تدریج از مریان‌های پایداری و فقط در بعضی از نواحی پراکنده اولیه خود به‌صورت تک‌جدایی باقی مانده‌اند. شرایط اصلی به استدلالی و نیز در دل‌کشته‌های انسان باید نیست (گلیکی زاده، 1379). در نمای انسان و همچنین به‌عنوان گونه در معرض خطر Fagus sylvatica (Shaheen et al., 2015) و در اروپا روش‌گاه‌های راش-سرخدر (Scarnati et L.-T. baccata L.) روش‌گاه‌های چندگلی با اولویت بالا حفاظت درنظر گرفته‌شده‌اند. (L.-(T. baccata L.) در ایران سرخدر در مناطق چندگلی شمال و آذربایجان اجتماعات معدودی را تشکیل می‌دهد (زارع، 1380) در مطالعات یلی علی‌اکبر (1363) در سالی و ناپل طالبی (بیر‌پاسی) در سرخدر گونه‌های زمین‌شناسی تحت غرب مازندران، آمیختگی توده‌ها در حفظ و ایجاد سرخدر‌های مؤثر دانسته و کند رشد و بودن در دهه 1381 از دیدگاه ژنتیک و ملایمی، مره‌پرستی، سیل‌پری و دوام چوب، خوش‌نویسی برای حیاتی و حیات و سرمایه‌ورون برای دام‌ها را از دل‌کشته‌های سرخدر تهیه کرده است. اسامیلزاده و همکاران (1384) جامعه مقدمه
محمد دریز و همکاران

Carpineto (Carpineto betuli - Taxetum baccatae orientalis - Taxetum baccatae)

مرمر- سرخردار (Carpineto betuli - Taxetum baccatae orientalis - Taxetum baccatae)

را از ذخیره‌گاه افراد تختی که در مرمر- گلابیان و همکاران (1294) در بررسی ویژگی‌های سخت‌داشتی ذخیره‌گاه سرخردار
گرو سوادکوهی، به‌شکلی ارتباط درختان سرخردار را 30 متر اندوزه‌گیری کرد و نتیجه گرفتند که توده
سرخردار موردبررسی یک توده نهایی استأ. که ضعف تجدیدپذیری طی سنین گذشته موجب کاهش
پایه‌های جوان سرخردار و شکل‌گیری محتوی پراکنش تعداد در طبقات قطعی شیبی جنگل همسال شده
است. پریشینا (1984) (Pridynya)، بیان داشته است که در کوه‌های قفقاز و جنگل پهن‌برگ با
ناته جذبیت هم بهبهمپوشته، اجازه رشد به درختان سرخردار را نمی‌دهد و بر اثر در نواحی که آب و
هوایی حاره‌ای دارند، درختان در مقال جنگل‌کا و دمای زیاد از آنها حمایت می‌گنند. هوارد و همکاران
(Shayeb طی زیستی شیمیایی خاک از زیر درختان سرخردار و بلوط که بر
روی خاک‌های بکسیک استقرار یافته مورد می‌گردد. فرار داده‌های دیوازند که اسیدهای هوموسی در
خاک زیر درختان سرخردار بیشتر اکسیده شده است. تیلور (2014) (Meysser و ماهیان در رابطه
با شرایط محیطی مناسب برای روش سرخردار را جمع‌بندی کرده و نتیجه گرفته‌اند که سرخردار از
ظرفی بر خاک‌های اشباع و از طرف دیگر بر خاک‌های شنی و خنک موفق نیست.

روشگاه جنگلی سرخردار گرو در سال 1385 به عنوان ذخیره‌گاه در نظر گرفته شده است. باوجود
پایه‌های قطع سرخردار در رویگاه‌گرو، تاکنون مطالعه چندین در این منطقه صورت نگرفته و
اطلاعات کافی درباره دریوار شرایت رویگاه‌گرو و خاک‌شناسی از این رویگاه‌گرو در دست نیست. هدف از
این تحقیق بررسی پوشش گیاهی ذخیره‌گاه طبقه‌بندی تیپ‌های جنگلی موجود و تأثیر شرایط
رویگاه‌گرو بر پراکنش درختان سرخردار و تیپ‌های جنگلی است.

مواد و روش‌ها

منطقه‌های موردطالعه

منطقه موردطالعه در پارس‌های 102 و 104 و 104 رسی بک (گرو) از طرح جنگل‌داردی آذرود حوزه
آبخیز 58 جنگل‌های هیرکانی واقع است (شکل 1). شهر شهرکار در مجاورت این سری قرار دارد.
متوسط بارندگی سالانه جویه 320 میلی‌متر، متوسط دمای سالانه 13 درجه ساعتی گراد و بر اساس

239
نشانه حفاظت زیست بوم گیاهان/ دوره هفتم، شماره چهارم، بهار و تابستان ۱۳۹۸

شاخ دومارتن دلای اقلیم مرطوب است. ارتفاع از سطح دریا ۳۵۰ تا ۱۲۵۰ متر و جهت عمومی منطقه شمالی است (اداره منابع طبیعی مازندران، ۱۳۸۹).

شکل ۱- موقعیت جغرافیایی منطقه موردطالعه (پارس‌های ۱۰۲ و ۱۰۴) (اداره منابع طبیعی مازندران، ۱۳۸۹)

روش تحقیق

منطقه موردطالعه در ارتفاع ۳۵۰ تا ۱۲۵۰ متر از سطح دریا گسترش دارد که به دلیل حذف شریعت حاشیه‌ای محدوده ۶۰۰ تا ۱۲۰۰ متر انتخاب و به خط ترانسکت به فاصله ۲۰۰ متر و با نقطه شروع نما و گروه‌های مشخص شد (روش برداشت منظم نما و گروه‌های سرخدار در منطقه، با حرکت در جهت خطوط میزان روان ترانسکت‌ها در محل برخورد خط ترانسکت به توجه به اینکه گروه‌های سرخدار، یک قطعه‌نمونه برداشت شد. همچنین در طول ترانسکت در حدفاصل دو گروه با توجه به تدوین، در صورت تغییر مشخص ترکیب فلورستیک و بر اساس ایده فرد جامعه Braun-Blanquet, 1932 (Blanquet, 1932

۲۴۰
Canonical Correspondence Analysis

1

241
نتایج طبقهبندی بوشته گیاهی
بر اساس نتایج آنالیز خوش‌وای و SPSS ج� بوشته گیاهی مجزا و بر اساس گونه‌های TWINSPAN درختی غالب نام‌گذاری شدند (شکل‌های ۲ و ۳):
۱. نیب سرخرد - ممز
۲. نیب راش - سرخرد
۳. نیب راش

نتایج تفکیک گروه‌ها توسط TWINSPAN با نتایج حاصل از آنالیز خوش‌وای منطقی است (شکل - های ۲ و ۳).

شکل ۲-نتجه TWINSPAN

شکل ۳-دروختره آنالیز خوش‌وای قطعات نمونه

۲۴۶
آلالیژ تیپ‌های گیاهی در ارتباط با متغیرهای محیطی

بر اساس نتایج بدست‌آمده، متغیرهای pH، کربن آلی، اثر کل و درصد رس خاک در سطح یک درصد و متغیرهای چگالی ظاهری و درصد شن در سطح پنجه درصد بین تیپ‌های مختلف دارای اختلاف معنی‌دار بودند. درحالی که برای متغیرهای درصد رطوبت اشباع خاک (SP) درصد سیلیت و متغیرهای تفت‌گرافی اختلاف معنی‌داری بین تیپ‌ها مشاهده نشد (جدول ۱). تیپ راش خالص دارای خاک بیشتری در مقایسه با تیپ‌های سرخ‌دار بوده و میزان کربن آلی و اثر کل در حال تیپ راش خالص بیشتر از تیپ‌های راش-سرخ‌دار و سرخ‌دار-مزرع بوده. همچنین تیپ سرخ‌دار-مزرع بر خاک‌های سنگین‌تر (شنی رسی لومی) در مقایسه با تیپ راش خالص (شنی لومی) دیده شد و تیپ راش-سرخ‌دار دارای وضعیت بافت خاک جد وسط دو تیپ دیگر بود.

جدول ۱ - مشخصات مکانی مواد اولریک در تیپ‌های مختلف به همراه نتایج مقایسه میانگین ۱

<table>
<thead>
<tr>
<th>متغیر</th>
<th>تیپ مزرع</th>
<th>تیپ سرخ‌دار</th>
<th>تیپ راش</th>
<th>تیپ اصلی</th>
<th>تیپ دیگر</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>۶/۱۹</td>
<td>۵/۳۱</td>
<td>۷/۳۲</td>
<td>۷/۲۳</td>
<td>۷/۲۳</td>
</tr>
<tr>
<td>کربن آلی (٪)</td>
<td>۴/۹۴</td>
<td>۲/۷۶</td>
<td>۴/۹۴</td>
<td>۴/۹۴</td>
<td>۴/۹۴</td>
</tr>
<tr>
<td>اثر کل (٪)</td>
<td>۱/۵۶</td>
<td>۰/۷۶</td>
<td>۱/۵۶</td>
<td>۱/۵۶</td>
<td>۱/۵۶</td>
</tr>
<tr>
<td>C/N</td>
<td>۳/۷۶</td>
<td>۲/۰۶</td>
<td>۳/۷۶</td>
<td>۲/۰۶</td>
<td>۲/۰۶</td>
</tr>
<tr>
<td>فشار (ppm)</td>
<td>۷/۸۶</td>
<td>۴/۱۷</td>
<td>۷/۸۶</td>
<td>۴/۱۷</td>
<td>۴/۱۷</td>
</tr>
<tr>
<td>SP (%)</td>
<td>۸/۴۶</td>
<td>۸/۴۶</td>
<td>۸/۴۶</td>
<td>۸/۴۶</td>
<td>۸/۴۶</td>
</tr>
<tr>
<td>چگالی ظاهری</td>
<td>۱/۳۶ ab</td>
<td>۱/۳۶ ab</td>
<td>۱/۳۶ ab</td>
<td>۱/۳۶ ab</td>
<td>۱/۳۶ ab</td>
</tr>
<tr>
<td>رس شن (٪)</td>
<td>۱/۴۶</td>
<td>۱/۴۶</td>
<td>۱/۴۶</td>
<td>۱/۴۶</td>
<td>۱/۴۶</td>
</tr>
<tr>
<td>سیلیت (٪)</td>
<td>۱/۴۶</td>
<td>۱/۴۶</td>
<td>۱/۴۶</td>
<td>۱/۴۶</td>
<td>۱/۴۶</td>
</tr>
<tr>
<td>ارتفاع (m)</td>
<td>۱/۴۶</td>
<td>۱/۴۶</td>
<td>۱/۴۶</td>
<td>۱/۴۶</td>
<td>۱/۴۶</td>
</tr>
<tr>
<td>شبکه (٪)</td>
<td>۵/۴۶</td>
<td>۵/۴۶</td>
<td>۵/۴۶</td>
<td>۵/۴۶</td>
<td>۵/۴۶</td>
</tr>
<tr>
<td>جهت (درجه)</td>
<td>۲/۴۶ ab</td>
<td>۲/۴۶ ab</td>
<td>۲/۴۶ ab</td>
<td>۲/۴۶ ab</td>
<td>۲/۴۶ ab</td>
</tr>
</tbody>
</table>

۱ در هر سطح جرون کوچک مشترک به معنی عدم وجود اختلاف معنی‌دار است.
نتایج پوشش گیاهی در طول گرادیان متغیرهای محیطی

نشان داد که مقدار ویژه و همبستگی متغیرها با محور اول معنی دار است (جدول ۲) و از آنجا که این محور همبستگی مثبت بالایی با درصد رس خاک و همبستگی منفی بالایی با متغیرهای pH و گستردگی کین آلی خاک دارد (جدول ۲)، می‌توان مترپایه‌ها، بافت خاک و pH بعد از آن‌ها کریز آلی خاک را مهم‌ترین عوامل اثرگذار در تفکیک تیپ‌های گیاهی منطقه مورد مطالعه دانست. محور اول پیانگر یک گرادیان از متغیرهای بافت خاک و pH سالاری گزارش‌ها در جهت ثبت محور اول، بافت خاک سخت‌بودندر شده و اسیدیت به خاک کاهش می‌یابد (شکل ۴). همان‌طور که مشاهده می‌شود، پلاک‌های مربوط به تیپ راش (شکل ۱) در سمت منفی محور اول و پلاک‌های مربوط به تیپ سرخدار-محزر در سمت ثبت محور اول چای گرفته‌اند. گونه‌ها نیز در طول گرادیان مذکور مرتب‌شده‌اند (شکل ۴).

<table>
<thead>
<tr>
<th>CCA</th>
<th>محور ۱</th>
<th>محور ۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار ویژه</td>
<td>۲۴۴ **</td>
<td>۵۸/۰۸</td>
</tr>
<tr>
<td>تعداد تجمعی نشان‌دهنده در داده‌های گونه</td>
<td>۱۵/۰۸</td>
<td>۸۷/۰۹</td>
</tr>
<tr>
<td>همبستگی گونه-محیط (دورسون)</td>
<td>۴۷/۵۷</td>
<td>۶۴/۱۰</td>
</tr>
<tr>
<td>همبستگی گونه-محیط (کندال)</td>
<td>۷۰</td>
<td>۴۰</td>
</tr>
</tbody>
</table>

نتیجه آزمون Monte Carlo: * معنی‌دار در سطح ۵/۰ ** معنی‌دار در سطح ۱/۰

جدول ۲- همبستگی متغیرهای محیطی با سه محور اول (همبستگی کندال)

<table>
<thead>
<tr>
<th>pH</th>
<th>C/N</th>
<th>pH</th>
<th>C/N</th>
<th>pH</th>
<th>C/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۴</td>
<td>- ۰/۴۱</td>
<td>۵۸</td>
<td>- ۰/۲۴</td>
<td>۱۰</td>
<td>- ۰/۲۳</td>
</tr>
<tr>
<td>۲۳</td>
<td>- ۰/۲۲</td>
<td>۵۸</td>
<td>- ۰/۲۴</td>
<td>۳۳</td>
<td>- ۰/۲۱</td>
</tr>
<tr>
<td>۲۲</td>
<td>- ۰/۲۴</td>
<td>۵۸</td>
<td>- ۰/۲۴</td>
<td>۳۳</td>
<td>- ۰/۲۱</td>
</tr>
<tr>
<td>۲۱</td>
<td>- ۰/۲۳</td>
<td>۵۸</td>
<td>- ۰/۲۴</td>
<td>۳۳</td>
<td>- ۰/۲۱</td>
</tr>
<tr>
<td>۲۰</td>
<td>- ۰/۲۳</td>
<td>۵۸</td>
<td>- ۰/۲۴</td>
<td>۳۳</td>
<td>- ۰/۲۱</td>
</tr>
</tbody>
</table>

رابطه ابعاد و سلامت درختان با متغیرهای محیطی

نباید نتایج بدنتیمده هیچکی از متغیرهای محیطی رابطه معنی‌داری با میزان سلامت و شایعی درختان سرخدر نداشت. هرچند به‌طور کل درختان سرخدار در خاک‌هایی با pH پایین‌تر و درصد ازت ۴۴۴
و فسفر، پیشتر از شادابی برخورد بوهداند (جدول ۴). در بررسی ارتباط ابعاد درختان سرخردار و متغیرهای محیطی، ارتفاع درختان و متغیرهای محیطی دارای اختلاف معنی‌داری نبود، اما رابطه شبیه و قطر برای پریسته معنی‌دار بود، بهترین که با افزایش شبیه شدند، قطر متوسط درختان کاهش یافته است.

(جدول ۴).

شکل ۳- دیاگرام رسم‌شده، CCA در فضای روجنده، بردارهای متغیرهای محیطی عبارت‌اند از: Aspect، pH، Sand، P، فسفر، OC، کربن آلی خاک و Clay.
جدول ۴- رابطه ابعاد و سلامت درختان با متغیرهای محیطی ۱

<table>
<thead>
<tr>
<th>شاخص و سلامت</th>
<th>فشار برابر بنسین (ساکسی‌تر)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤ ۰ ۰۵</td>
</tr>
<tr>
<td>تناجر پوست (٪)</td>
<td>۵۸ ۸</td>
</tr>
<tr>
<td>انحراف میانه</td>
<td>۱۶</td>
</tr>
<tr>
<td>تناجر پوست (٪)</td>
<td>۲۸ ۸</td>
</tr>
<tr>
<td>انحراف میانه</td>
<td>۱۲</td>
</tr>
<tr>
<td>pH</td>
<td>۶ ۸</td>
</tr>
<tr>
<td>انحراف میانه</td>
<td>۲</td>
</tr>
<tr>
<td>کربن آلی (٪)</td>
<td>۲۱ ۸</td>
</tr>
<tr>
<td>انحراف میانه</td>
<td>۱۱</td>
</tr>
<tr>
<td>ارتفاع کل (٪)</td>
<td>۲۱ ۸</td>
</tr>
<tr>
<td>انحراف میانه</td>
<td>۱</td>
</tr>
<tr>
<td>تعداد رس</td>
<td>۸</td>
</tr>
<tr>
<td>انحراف میانه</td>
<td>۱۱</td>
</tr>
<tr>
<td>تعداد سیلت</td>
<td>۲۴</td>
</tr>
<tr>
<td>انحراف میانه</td>
<td>۹</td>
</tr>
<tr>
<td>انحراف میانه</td>
<td>۶</td>
</tr>
<tr>
<td>تعداد سن</td>
<td>۴۴</td>
</tr>
<tr>
<td>انحراف میانه</td>
<td>۲۴</td>
</tr>
<tr>
<td>انحراف میانه</td>
<td>۱۲</td>
</tr>
<tr>
<td>ارتفاع میانه</td>
<td>۷۸ ۸</td>
</tr>
<tr>
<td>انحراف میانه</td>
<td>۱۲۱ ۸</td>
</tr>
<tr>
<td>شبیه (٪)</td>
<td>۵۸ ۸</td>
</tr>
<tr>
<td>انحراف میانه</td>
<td>۲</td>
</tr>
<tr>
<td>جهت (درجه)</td>
<td>۲۲۱ ۸</td>
</tr>
<tr>
<td>انحراف میانه</td>
<td>۱۰۷</td>
</tr>
</tbody>
</table>

۱ در هر سطر حروف کوچک مشترک به معنی عدم وجود اختلاف معنی‌دار است.
بحث و نتیجه‌گیری

چنگل‌های سرخردار از نظر روش‌های دو روش سوم زمین‌شناسی گستردگی که در در حال به‌کارگیری برخی از روش‌های جدید توصیف شده است. در این مطالعه، نسبت گروه‌های پراکندگی در چنگل‌های راه و نازد ذکر شده‌اند که به‌صورت تک‌پایه با گروه –

Kassionmis et al., 2004; Scarnati et al., 2009.

در این جوامع معمولاً سرخردار و سرخرداری از ذخیره‌گاه سرخردار افزایش گرفته، (اسماعیل زاده و همکاران، 1384) و تیپ سرخردار آزمون چنگل‌های ارسالن (عابدی و همکاران، 1388) معرفی شده‌اند. در منطقه گروه نیز تیپ سرخردار-مزوز و راش-سرخردار شناسایی شد. گونه‌های راش و

سرخردار هر دو از گونه‌های سایه‌سپر بوده (مروی مهاجری، 1384) و نیازهای روشی مشابهی دارند.

تیپ راش-سرخردار به لحاظ فلوروستیک نزدیکی زیادی به تیپ راش خالص دارد، به نحوی که در آن‌لایز خوشواهر به همراه تیپ راش خالص در یک گروه یک‌گزاری قرار گرفته‌اند (شکل 3). بنابراین می‌توان تیپ راش-سرخردار را اجتماعی در حال گذر از جوامع سرخردار به جوامع پهن‌بر گزینه‌جات جامعه کلیماکس راش دانست. شرایط محیطی نیز مؤثر این مطالعه اصلی جنگل تیپ راش-سرخردار شرایط حداکثر است. سرخردار-مزوز و راش دو تیپ مصرفی سرخردار و راش خالص از نظر داد (جدول 1 و شکل 3) در همان‌جا سرخردار در چنگل-

Abies pindrow (Royle ex D.Don) Royle* (Royle et al., 2015)*

گونه‌های سایه‌سپر و دارای سرخت اکوژئیک نزدیک به راش است، نام‌برده شده است (Shaheen et Shad, 2015).

متغیرهای بفکات pH و حاکم و پس‌آن‌ها گرین آلی حاکم مهم‌ترین عوامل انتخاب در تفکیک

تیپ‌های گیاهی منطقه شناخته شده‌اند. تیپ‌های سرخردار دارای pH حاکم کمتر (7/3) می‌تواند. ضمن اینکه در حاکم‌های با pH کمتر درختان سرخردار از شادای

پیشتری برخوردار بودند. مصداق (174) بیان می‌کند که سرخردار در حاکم‌های اسیدی بهتر می‌تواند

مناسب برا سرخردار را pH با بررسی نتایج تحقیقات متعددی (Taylor, 2014)ری. ۶ pH جمع‌بندی کردی است. در جنوب غرب ایران نیز سرخردار خاک‌هایی پیش‌بینی آبی و

معادل 1/11 ± 0/8 روش دارد (Kelly, 1981). این نتایج با نتایج حاصل در تحقیق حاضر مطابقت دارد.

جوامع راش در منطقه موردمطالعه از نوع جوامع راش‌های خاک‌هایی به‌وده و حضور

Sanicula (Asperula odorata) (SANICULA) گونه‌های معرف راش‌های خاک‌هایی آهکی
تشریح حفاظت زیست یوم گیاهان/ دوره هفتم. شماره چهاردهم، بهار و تابستان 1398

میزان کربن آلی خاک در تیپ سرخردان - مرمز گریز (149-3 درصد) از تیپ مشابه در گنجایش ارسیران (127 درصد) (عبادی و همکاران، 1388، آبیشت گوشه، آما میزان ازت کل یکسان است (19); درصد در گریز و 180 درصد در ارسیران). در منطقه موردطالعه میزان کربن آلی و آت کل در تیپ رش خاکی بیشتر از کربن خاکی سرخردا-مرمز بود. در گنجایش گیاهان مورد بالا سرخردا آمیخته به یک گیاه منابع موجود در مقایسه با گیاهان خاکی سرخردا، به لحاظ تمایلی خاک غنی تر بودهاد (احمدی و همکاران، 1379). در گنجایش رش-سرخردا اروپایی، زدادریاری سرخردا با تجمع نیترات در خاک همبستگی منفی داشته است و چنین نتیجه‌گیری شده است که انتشار کاهش دارد. گاهی می‌گویند (Scarnati et al., 2003)، با کاهش نیترات سرخردا درختان بیشتر از مقایسه آن در خاک زیر درختان بوته بوده است.

اسامعیل زاده و همکاران (1384) شرب را عامل اثرگذار در تفکیک تیپ‌های ذخیره گاه سرخردا افزایش داشته بانحوی که تا شیب ۷۰ درصد جامعه مرمز-سرخردا و پیشتر از آن جامعه لر-سرخردا حضور داشته است. در منطقه گریز نبی تیپ مرمز-سرخردا بتوانست کمتر از ۷۰ درصد روش داشته، همچنین با افزایش شیب، قطر متوسط درختان کاهش یافته است. در مطالعات روبیشگاه-های سرخردا ارسیران ارتباط قطر و ارتفاع متوسط درختان با شیب از روند خاصی پیرامون یک نکته، اما مقایسه این فاکتور در طبقه ارتفاعی ۱۳۰۰-۱۳۰۰۰ متر از سطح دریا حاکم بوده است (عابدی و همکاران، 1388).
درمیان دو ذکره‌گاه گزه، سرخدار با گونه‌های راش و ممزق به صورت آمیخته مشاهده می‌شود و منطقه‌های تبیین سرخدار خالص است. این شرایط موجود در سالیانه جوایز و مرحله‌های داده‌های فیزیولوژیکی، نواحی دانشگاه و نواحی دانشگاه را نشان داده. بنابراین عوامل دیگری از جمله فعالیت‌های انسان و تغییرات اقلیمی در مورد سبک زندگی و رفتار را می‌توان به عنوان عوامل مؤثر موردنظر قرار داد که پژوهش در این راهبرد در سطح کشور و با بررسی روش‌گاه‌های مختلف سرخدار هیکلی، راه‌گشا خواهد بود.

منابع
امحمدی، ت، زرین کفه، م، سردایی، ح. ۱۳۸۴. بررسی ارتباط خصوصیات فیزیکی و سیمیابی خاک و تشخیص عنصر معدنی آن توسط درخت سرخدار در جنگل تحقیقاتی واز (غرب مازندران)، پژوهش و سازندگی ۱۳۸۴.۴۹-۷۵.

اداره منابع طبیعی مازندران (سرای). ۱۳۸۴. درجه جنگل‌های گزه. ۱۶۶ ص.

اسماعیل زاده، ا. حسینی، س. م، طبری، م. ۱۳۸۴. بررسی جوامع جنگلی در جنگل‌های خاک افتخاری، پژوهش و سازندگی ۱۳۸۴.۲۴-۳۷.

درگاهی، د. ۱۳۸۴. گزارش نهایی طرح تحقیقاتی بررسی اکولوژیک گونه سرخدار در جنگل‌های شرق البرز، دانشگاه علوم کشاورزی و منابع طبیعی گران، ۱۲۷ ص.

زارع، ح. ۱۳۸۱. گونه‌های بومی و غیربومی سوزنی بکر ایران، موسسه تحقیقات جنگل‌ها و مرتع گکشور، ۴۹۸ ص.

قنبری شرفه، ع، مراد مهاجر، م، زبیری، م. ۱۳۸۹. بررسی زادآوری طبیعی سرخدار در جنگل‌های ارسی‌وار، مجله تحقیقات جنگل و صنعت ایران، (۳۸)۱۳۸۴-۳۵-۳۷.

غلامی، ب، مروی مهاجر، م، زبیری، م. ۱۳۹۴. بررسی برخی ویژگی‌های ساختاری سرخدار در منطقه رودک، مجله تحقیقات جنگل و صنعت ایران، ۴۴:۳۰-۳۷.

گلیلی زاده، د. ۱۳۸۹. بررسی جوامع جنگلی سرخدار، پایان‌نامه کارشناسی ارشد، دانشگاه علوم کشاورزی و منابع طبیعی گران، ۱۲۷ ص.

لسانی، م. تأثیر طالبه‌خانه، ۱۳۸۹. بررسی مقدماتی توده طبیعی و خالص سرخدار، مرکز تحقیقات منطقه کرمان در بیابان خزر، ۲۰ ص.
Taxus baccata

نشریه حفاظت زیست یوم گیاهان/ دوره هفتم، شماره چهاردهم، بهار و تابستان ۱۳۹۸

۲۵۲