تأثیر بیوجار و کمبوست زباله شهری بر گیاه‌پایینی فلزات سنگین و Ziziphus spina-christi (L.) Willd

هدی آلبودایی، مصطفی مرادی، استاد دینار گره‌مانگی

دانشجوی کارشناسی ارشد، گروه جنگلداری، دانشکده منابع طبیعی، دانشگاه صنعتی خاتم‌الانبیاء، بهتیار، بهتیار

استاد دینار گره‌مانگی، دانشکده منابع طبیعی، دانشگاه صنعتی خاتم‌الانبیاء، بهتیار

استاد دینار گره‌مانگی، دانشکده منابع طبیعی، دانشگاه صنعتی خاتم‌الانبیاء

تاریخ دریافت: 1396/5/19
تاریخ پذیرش: 1396/12/19

چکیده

این اثر، شدن آب و خاک به ترکیبات نفتی معدن سی مس و سرمایزی بودن آنها، سبب مهمی است. هدف این پژوهش بررسی تأثیر بیوجار (زغال زیستی) و کمبوست زباله شهری بر گیاه‌پایینی فلزات سنگین و هیدروکربن‌های کل نفتی خاک توسعه گونه کل نفتی (Ziziphus spina-christi (L.) Willd) است. برای انجام این تحقیق از نهال‌های بیوجار و کمبوست خاک جنگل‌داری، به‌میزان صحیح و با دو درصد استفاده شد. نتایج نشان داد که در میان چهار نوع محیط استفاده شد، نتایج نشان داد که در میان چهار نوع محیط استفاده شد. نتایج نشان داد که در میان چهار نوع محیط استفاده شد.

نویسنده مسئول: moradi4@gmail.com

261
تشریح هفطاف زبس بوم گیاهان/ دوره ششم، شماره دوازدهم، بهار و تابستان 1397

پیچار کی درصد از سایر تیمارها می‌باشد، بیشترین مقدار نیکل مربوط به تیمار شاهد بود. مفاهیم میانگین نشان داد فلت و بلوغ خاک در تیمار کمیستات پک درصد کمتر از سایر تیمارها می‌باشد. در حالی که بیشترین مقدار ونادی مربوط به تیمار شاهد بود. نتایج این تحقیق نشان از اهمیت پیچار کی و کمیستات در خاک‌های آهود نشی است.

واژه‌های کلیدی: هیدروکربن‌های کل نفتی، فازات سنگین، کنار، کمیستات، پیچار کی، گیاه‌پزشکی

مقدمه

الوده شدن منابع آب و خاک به ترکیبات مختلف آلی و معدنی، از نظر جنبه‌های زیست‌محیطی و سلامت انسان بسیار حائز اهمیت است (Nascimento et al., 2006). مواد نفتی می‌توانند از طریق نشی از مخازن زیرزمینی، بالا‌شیب‌ها و غیره وارد محیط خاک و در نهایت آب‌شناسی و باعث ازدحام محیط‌زیست می‌گردند. وجود این مواد نفتی در محیط‌زیست و جریان‌های غذایی و آب منجر به روز رسانی سرطان می‌گردد. چرا که حاصله هیدروکربن‌های آلی است که سرطان‌زای بسیاری از آن‌ها به Total petroleum (Gustafson, 1997). هیدروکربن‌های کل نفتی (hydrocarbon, TPH) از جمله آلودگی‌های زیستی می‌باشند که از طریق بالاشیب‌ها نفت و گاز وارد خاک و در نهایت به‌سازی زیرزمینی می‌شود. بنابراین همگامی نشانات محققین بر این بوده تا به نویس

این آلودگی‌ها را از محیط‌زیست حذف کنند.

فناوری استفاده از گیاهان برای استخراج کاهش و یا محدود کردن انتقال آلودگی‌ها به خاک و آب را کاری ارزان قیمت و دوستدار محیط‌زیست می‌باشد. گیاه‌پزشکی یک فن آوری نوین است که با استفاده از گیاهان برای جذب، جمع آوری و رفع آلودگی‌های طبیعی، شیمیایی و بیولوژیکی به طور گسترده می‌گردد. گیاه‌پزشکی که به کار می‌رود از ترکیبات مطلوبی است که می‌تواند باعث نجات محیط طبیعی می‌شود. الگویی سی‌پنیس Sinapis و شیپارگوزیس Stipagrostis plomusa همچنین محققین گیاه‌پزشکی مانند می‌شناسد. بهدلیل حضور فراوان و نیازی به پاک‌سازی شرایط ناسازگار زبسیتی (الوده به ترکیبات نفتی)، به- arvensis

عنوان ابزار گوناگون آلودگی‌های نفتی در مناطق آلوده N. 1395. علاوه بر این رضایی که در شرایط ناسازگار زبسیتی (الوده به ترکیبات نفتی)، بهدلیل حضور فراوان به پاک‌سازی نفتی جهت مطالعات بعدی گیاه پالیایی به‌منظور بافت‌های راکه‌ری

462
استقرار بهتر گیاه و افزایش کارایی گیاه بالایی پیشنهاد دادند که نشان دهنده اهمیت و نقش گیاهان در کاهش آلودگی محیط می‌باشد. کنار آلودگی می‌توان به کاهش مصرف (زيزیفوس spina-christi) از مناطق آلوهه معرفی شده است (فیاض و باقری پور، ۱۳۹۵). کنار یویی مناطق گرم‌سیری و نیمه گرم‌سیری است (مظفریان، ۱۳۸۳) و درخت خاردار، همیشه سبز و در پیش می‌باشد. افزایش آن به یک متر می‌رسد و در مناطق مرطوب، همیشه سبز است. این درخت در مکان‌های پست، خشک و مرطوب، تراس رودخانه‌ها و حاشیه مزارع قادر به رشد می‌باشد و در ساحل‌های ایرانی داره دشت با پات سبک رشد بهتری دارد (Sadeghi, 2011). دارای ریشه‌های عمیق به مانند دستی‌بایی به بالا بیشتر زیرزمینی عمیق در قشول خشک که سطح خشک این می‌باشد (Depommier, 1988). همچنین این درخت به دلیل داشتن زنده می‌ماند زنده مقاومت به استرس‌ها و غیره زندگی از اهمیت بالایی برخوردار است (Abdmishani and Shahnegat-Bushehri, 2001)

اما امری‌های برای کاهش اثرات منفی آلاینده در کنار گیاه بالایی، از دیگر فرآیندها نیز استفاده می‌شود. از جمله این فرآیندها برای افزایش کارایی گیاه بالایی استفاده از کودهای زبسک، حیوانی، آناورانت می‌باشد. استفاده از کودهای آلی به عنوان تیمار در خاک‌های آلوده سبب کاهش تورک فلزات سناگی شده است Yang (بهدلیر افزایش زیست‌توان گیاه، موجب جمع بیشتر فلزات اندام‌های هواپیمای گیاه می‌شود) (2005). از جمله کودهای آلی می‌توان به کمیست که نوعی کود آلی هوازی حاصل از فعالیت گونه-هایی از کرم خاکی است و بیوچار که نوعی زغال نهیده شده از زیست‌توان گیاهی و بقایای کشاورزی است. اشاره کرد (Ahmad et al., 2012)

تحقیقات نشان داده که برخی گونه‌ها مثل Populus nigra می‌تواند باعث کاهش ۸۰ درصدی ۹۸ میزان هیدروکربن‌های نفتی خاک (Don et al., 2012) بوده استفاده از تیمارهای اصلاح کننده مثل کمیست و بیوچار می‌تواند افزایش گیاه بالایی فلز سناگی نیکل (فیاض و باقری پور، ۱۳۹۵) و همچنین کاهش هیدروکربن‌های آروماتیک حلقوی خاک شود (Feng et al., 2014). به نشان دهنده اهمیت بیوچار و کمیست به عنوان عامل کمکی در جهت افزایش قدرت گیاه بالایی گیاهان می‌باشد (Barati et al., 2017; Oliveira et al., 2017) به علاوه حذف هیدروکربن‌های کل نفتی پوستی گیاه Vetiveria zizanioides و جمعیت میکرو‌بیوضخ در خاک‌های آلوده به نفت در

۲۴۳
اهوای نیز مورد بررسی قرار گرفته است و نتایج مشخص کرده است که
پالایی در حذف هیدروگرن‌های کل نفی دارد (گردانی و نتکستان، 1394).

بسیاری از مناطق کشورمان به‌خصوص مناطق کوه‌های میان نفتی خارمیانه محصول
می‌شوند. ناپایین گذیران این نئناتپی را دارند که هر سال می‌زیاده‌های بالقوه
سمی و گذشتگاه را به محبیزیست وارد کنند که منجر به تحقیل آثار سودی بر پیکره‌ی زیست بوم
می‌شود. از طرفی در چنین مناطقی استفاده از روش‌های کم هزینه و سریع‌کاری محیط‌زیست در رفع
آلودگی‌ها کمتر برداشتی شده است. لذا، تحقیق حاضر با هدف بررسی تأثیر بیوچار و کمیوست زیاله
Z. شهری بر گیاه‌‌بانی فلزات سنگین و هیدروگرین‌های کل نفی (TPH) انجام شد. نجاری. spina-christi

مواد و روش

خاک مورد استفاده در کشت گل‌دانی، خاک آلوده به سلج‌نفتی می‌باشد که از منطقه چوب سرخ
روستایی در دهستان تل ریز مسجد سلمان، در میان ۱۵ کیلومتری و ۴۰۰، ۵۰۰ ۳۱ و ۱۳۰ متر

۲۲۹ شرکت سیستم‌سازی جمع‌آوری شد. این محل بی‌کی از مکان‌های اقامتگاهی به‌نیاپوتی واحد
شماره ۹ شرکت به‌پردازی نفت و گاز مسجدسلیمان می‌باشد. خصوصیات فیزیکی و شیمیایی خاک
مورد استفاده در این تحقیق در جدول شماره ۱ آورده شده است. برای اعمال تیمارهای کمیوست زیاله
شهری و بیوچار کمیوست زیاله شهری، کمیوست و بیوچار در سه سطح صفر، ۱ و ۲ درصد به‌صورت
ورنی به خاک‌ها اضافه شدند. در جدول ۲ مشخصات کمیوست و بیوچار استفاده شده در تحقیق ارائه
شد. است. همچنین در کار تیمار شاهد با گونه کنار (نیمی تیماره کمیوست و بیوچار صفر درصد بود).

تیمار شاهد بدون گونه کنار (بدون کیف) نیز بررسی شد.

برای انجام این تحقیق از نهال‌های یک‌سانه گونه کنار استفاده شد. نهال‌های کنار در معرض
تیمارهای ذکر شده در بالا قرار گرفته و بعد از پایان دوره رشد گل‌ها (حدود ۶ ماهه)، از خاک گل‌دان‌ها
نمونه‌برداری و فاکتورهای موجود در منظر تعبیه تأثیر گیاه و تیمارهای اصلاح‌کننده بر روی
هیدروگرین‌های کل نفتی و فلزات سنگین نیکل و ونادیم بررسی شد. برای نمونه‌برداری همه خاک
گلدان خارج شد و سپس از هر گلدان به‌صورت جداگانه نمونه‌ها برداشت شدند.
تهیه کمبوست زباله شهری و بوچار

نمونه‌های کمبوست زباله شهری از استفاده هلالی وزیرزاد علیزاده کرگ تهیه شد که کمبوست مخلوط زباله شهری جنگلهای تاهینه را نگ در نهادی ازبین برداشت. نمونه‌های کمبوست زباله شهری در هوا آزاد خشک شد. سپس نمونه‌ها آسیاب و از الک ۲ میلی‌متری عبور داده شدند تا به صورت یک‌واخت آماده شوند. جهت تهیه بوچار نمونه‌ها را بدین آب‌ها به‌دست آورد که در داخل طوفان دربار ریخته شدند. سپس به‌منظور ایجاد شرایط کم‌یا بدون اکسیژن در داخل کوره و طوفان دربار، تعدادی شمع روشی کردند که یا اکسیژن باقی مانده در درون کوره و طوفان تمام شود، با شرایط برای انگام فرآیند پیروزی به‌پایه شود. در نهایت نمونه‌ها به مدت ۶ ساعت در بهره‌گذاری در داخل کوره قرار داده شدند تا بوچار تهیه شود.

تعیین مقدار کل فازات سنگین نیکل و ونادی در نمونه‌های خاک

بعد از آنکه نمونه‌های خاک گلدان‌ها در داماهای مختلف سانی‌گذار در آن، خشک شده و از الک ۲ میلی‌متری عبور داده شدند، آماده عصاره‌گیری شدند. در ابتدای گرم کردن خاک، از آب انجام شد و با دمای ۴۰ درجه مورد مدت ۳۰ ساعت داخل اجاق بین ماری قرار گرفت. سپس نمونه‌ها از کانفیسیون واتنم ۴۲ عبور داده شد و در بالین ۱۵ سی‌سی یا آب دوبار تقطیر به حجم ۵۰ سی‌سی رسید (APHA, 1998). در کام بود نمونه‌ها از کانفیسیون استاخته‌گردی به‌صورت GBC Avanta ICP-OES سلولاری ۲۳۲ هور داده شد تا برای قراتت با دستگاه استرالیا (مدل EPA-3550) اماده شوند.

اندازه‌گیری هیدروکبینه‌های کل نفتی (TPH) در خاک

برای اندازه‌گیری میزان هیدروکبینه‌های کل نفتی در خاک از روش آرزوی حفاظت محیط‌زیست آمریکا (EPA-3550) استفاده کردم. ابتدایی از خاک را درون هاوایی، یک گرم خاک شکسته و در کوره‌ای به دبی‌های مختلف دانسته (نسبت 1:1) اضافه شده و بلافاصله ۱۵ دقیقه تکان داده و سپس آنها را به مدت ۴ دقیقه بنا به دوره‌هایی در دقیقه مخلوط نمونه‌ها با برش‌های تنیشن گردیدن. پس از سانتی‌متر یک میلی‌لیتر از مایع
رویی را برداشت و برای اندازه‌گیری میزان ترکیبات هیدروکربنی آن مورد استفاده قرار گرفت (Tehrani et al., 2006; Hutchinson et al., 2001). سپس با استفاده از دستگاه گروماتوگرافی گازی از نوع بوتیل سیلن سه مدل Agilent 7890A، مقدار کل هیدروکربن‌های اندازه‌گیری شد.

جدول 1- برخی از مشخصات خاک اولیه گلستان‌ها

<table>
<thead>
<tr>
<th>متغیرها</th>
<th>میزان اندازه‌گیری (mg/kg) (TPH)</th>
<th>pH</th>
<th>قابلیت هیدرولیک (dS/m) (EC)</th>
<th>کربن آتی (درصد)</th>
<th>نیتروژن (N) (درصد)</th>
<th>پتاسیم (mg/kg) (K)</th>
<th>فسفر (mg/kg) (P)</th>
<th>رس (درصد)</th>
<th>سیلیت (درصد)</th>
<th>شن (درصد)</th>
<th>نیکل کل (mg/kg)</th>
<th>وانادیم کل (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>هیدروکربن‌های کل نشیض</td>
<td>0.75</td>
<td>7.5</td>
<td>0.788</td>
<td>0.43</td>
<td>0.17</td>
<td>0.3</td>
<td>0.9</td>
<td>6</td>
<td>22</td>
<td>72</td>
<td>27</td>
<td>90</td>
</tr>
<tr>
<td>هیدروکربن‌های کل نشیض</td>
<td>0.75</td>
<td>7.5</td>
<td>0.788</td>
<td>0.43</td>
<td>0.17</td>
<td>0.3</td>
<td>0.9</td>
<td>6</td>
<td>22</td>
<td>72</td>
<td>27</td>
<td>90</td>
</tr>
<tr>
<td>هیدروکربن‌های کل نشیض</td>
<td>0.75</td>
<td>7.5</td>
<td>0.788</td>
<td>0.43</td>
<td>0.17</td>
<td>0.3</td>
<td>0.9</td>
<td>6</td>
<td>22</td>
<td>72</td>
<td>27</td>
<td>90</td>
</tr>
</tbody>
</table>

جدول 2- نتایج تجزیه کمیوست زیاله شهری و بوچار کمیوست زیاله شهری
تجزیه و تحلیل داده‌ها

<table>
<thead>
<tr>
<th>پیوجار کمپیوست زیاله شهري</th>
<th>مقدار</th>
<th>کمپیوست زیاله شهري</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>کریم کل (%)</td>
<td>10/81</td>
<td>فسفر (%)</td>
<td>0/77</td>
</tr>
<tr>
<td>نیترژن (%)</td>
<td>0/75</td>
<td>هیدروژن (%)</td>
<td>0/70</td>
</tr>
<tr>
<td>یونسیم (%)</td>
<td>0/19</td>
<td>وزن مخصوص ظهیر (dS/m)</td>
<td>0/65</td>
</tr>
<tr>
<td>هدایت الکتریکی (gr/cm3)</td>
<td>0/43</td>
<td>pH</td>
<td>0/89</td>
</tr>
<tr>
<td>(عصاره)</td>
<td>0/9</td>
<td>(عصاره)</td>
<td>0/95</td>
</tr>
</tbody>
</table>

درصد رطوبت (dS/m) | 9/25

این اcéمابش در سه تکرار برای هر تیمار و در قالب طرح گالاً تصادفی انجام گرفته. کلیه داده‌های موجود با استفاده از آزمون‌های کلوموگروف اسمیرنوف و لیون مورد بررسی همگنی قرار گرفتند. به منظور بررسی و تجزیه و تحلیل آماری اطلاعات اندازه‌گیری‌شده از آزمون تجزیه واریانس یک طرفه استفاده شد. در صورتی که بین واریانس‌ها تفاوت معنی‌داری وجود داشت از آزمون مقایسه میانگین چند دامنه‌ای دانکن برای تعیین اختلاف بین گروه‌ها استفاده شد. کلیه نتایج‌ها در مبحث نتایج SPSS نسخه 16 انجام شد. همچنین نمودارها با استفاده از نرم‌افزار Excel نسخه 2013 رسم شدند.

نتایج

بررسی تأثیر کاربرد تیمارهای اصلاح کننده بر گیاهانهای فلز نیکل

نتایج نشان داد اثر تیمارهای اصلاح کننده (کمپیوست زیاله شهری و بیوجار) بر غلظت فلز نیکل خاک معنی‌دار بود (جدول 2). مقایسه میانگین‌ها نشان داد غلظت نیکل خاک در تیمار بیوجار یک درصد کمتر از سایر تیمارها می‌باشد، بنابراین مقدار نیکل خاک مربوط به تیمارهای می‌باشد. به گونه
نشrire حفاظت زیست یوم گیاهان/ دوره ششم. شماره دوازدهم. بهار و تابستان ۱۳۹۷

کار و شاهد بدن کار بود (شکل ۱) با توجه به شکل ۱، بی‌چارگی درصد از سایر تیمارها مناسب‌تر می‌باشد و عنصر نیکل را بیشتر جذب گرده است.

شکل ۱- مقایسه میزان‌گی اثر تیمارهای مورد بررسی بر روی فلزات نیکل خاک (حروف متفاوت نشان‌دهنده وجود تفاوت معنی‌دار بین تیمارها می‌باشد)

جدول ۳- تجزیه واریانس اثر تیمار بر نیکل خاک

<table>
<thead>
<tr>
<th>Sig.</th>
<th>متغیر</th>
<th>درجه آزادی</th>
<th>میزان‌گی‌های مربعات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>بین گروه‌ها</td>
<td>۵</td>
<td>۲۹۵۱۰۵۶**</td>
</tr>
<tr>
<td></td>
<td>داخل گروه‌ها</td>
<td>۱۲</td>
<td>۶۳۶۶</td>
</tr>
<tr>
<td></td>
<td>کل</td>
<td>۱۷</td>
<td></td>
</tr>
</tbody>
</table>

** در سطح بک درصد معنی‌دار

۲۶۸
بررسی تأثیر کاربرد تیمارهای اصلاح‌کننده بر گیاه‌الیاف فلف و نانمی

اثر تیمارهای اصلاح‌کننده کمپوست زباله شهری و بیوجار بر غلظت وانادیم خاک معنی‌دار بود (جدول 4). مقایسه میانگین‌ها نشان داد غلظت وانادیم خاک در تیمار کمپوست یک درصد کمتر از سایر تیمارها می‌باشد، بیشترین مقدار وانادیم خاک مربوط به تیمار شاهد با گونه کنار و تیمار شاهد بدون گونه کنار بود (شکل 2). همانطوری که در شکل 2 مشاهده می‌شود تیمار کمپوست یک درصد از همه مناسب‌تر می‌باشد و فلف و نانمی را بیشتر از سایر تیمارها جذب گرده است، البته قابل ذکر است بین کمپوست یک درصد و کمپوست دو درصد تفاوت معنی‌داری وجود ندارد.

شکل 2 - مقایسه میانگین‌اثر تیمارهای مورد بررسی بر روی غلظت وانادیم خاک (حرفوی متغیر نشان دهنده وجود تفاوت معنی‌دار بین تیمارها می‌باشد)
<table>
<thead>
<tr>
<th>متغیر</th>
<th>درجه ارزادی</th>
<th>سنگینی مربوطات</th>
</tr>
</thead>
<tbody>
<tr>
<td>بین گروه‌ها</td>
<td>5</td>
<td>54214</td>
</tr>
<tr>
<td>وانادیم حاکم</td>
<td>داخل گروه‌ها</td>
<td>12</td>
</tr>
<tr>
<td>کل</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

**: در سطح یک درصد معنی‌دار

این تیمارها بر میزان هیدروکربن‌های نفتی خاک (TPH)

اثر تیمارهای اصلاح‌کننده (پیچ و کمپوزت) بر مقدار هیدروکربن‌های کل نفتی خاک در سطح یک درصد معنی‌دار بود (جدول ۲). نتایج حاصل از بررسی اثر تیمارها بر مقدار هیدروکربن‌های کل نفتی خاک نشان داد که بیشترین مقدار هیدروکربن‌های خاک مربوط به تیمار شاهد بدون گونه کنار و کمترین مقدار هیدروکربن‌های خاک مربوط به تیمار کمپوزت دو درصد بود. همانطور که شکل ۳ نشان می‌دهد، بین تیمارهای کمپوزت یک و دو درصد تفاوت معنی‌داری وجود ندازد. همچنین بین تیمارهای شاهد با گونه کنار و شاهد بدون گونه کنار تفاوت معنی‌داری وجود ندارد.

(شکل ۳)
جدول ۵- تجزیه و ارایه اثر تیمار بر هیدروکربن‌های کل نفتی خاک

<table>
<thead>
<tr>
<th>متغیر</th>
<th>درجه آزادی</th>
<th>میانگین مربوط</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>بین‌گروه‌ها</td>
<td>۵</td>
<td>۲۳/۳۷**</td>
<td>۲۰۰۳</td>
</tr>
<tr>
<td>هیدروکربن‌های کل نفتی خاک</td>
<td>۱۷</td>
<td>۴/۷۲۶</td>
<td></td>
</tr>
<tr>
<td>کل</td>
<td>۱۷</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
بحث و نتیجه‌گیری

در این تحقیق مشخص شد که اثر فاکتورهای اصلاح کننده (پیچ و کمپوست) بر مقدار هیدروکربن‌های کل نفی خاک معنی‌دار است و این تیم‌ها می‌توانند با افزایش جدب آلاینده‌ شوند. زیرا بخش ترین مقدار هیدروکربن‌های باقیمانده در خاک مربوط به تیمار شاهد و کمترین مقدار هیدروکربن‌های باقیمانده در خاک مربوط به تیمار کمپوست یک و دو نیز بود.

کنار به عنوان گونه مورد استفاده در این تحقیق با حضور پیچ و کمپوست باعث کاهش میزان هیدروکربن‌های کل نفی خاک شد که هموس با نتایج دیگر محققین می‌باشد (2012). به‌طور کلی گونه‌هایی با ترکیبات آلی مانند گلوکز، آنزیم و کربوهیدرات‌های پیچیده در ناحیه ریشه گیاه که منبعی مناسب از کربن و انرژی را برای تولید آنتی‌وکسیدان‌های ناحیه ریشه فراهم می‌سازد باعث حذف مقدار زیادی از هیدروکربن‌های کل نفی خاک می‌شوند (علوی، 1392). همچنین گیاهان قادرند از طریق رهاسازی عناصر غذایی و ترشحات خون در خاک و انتقال اکسیژن به ناحیه ریشه خود موجب تحريك و افزایش فعالیت جمیت میکرو‌کنترل کننده آلاینده‌های نفی شوند.

کمپوست با افزایش میزان مواد معذی خاک و تحریک ریزتواننت باعث حاصلخیز شدن خاک می‌شود (Zhen et al., 2014). ریز جانداران از هیدروکربن‌ها به عنوان منبعی برای افزایش انرژی و کربن مورد نظر استفاده می‌کنند و هیدروکربن‌ها را به آب و دیگر اکسیداسیون تبدیل می‌کنند و تابع آن کاهش هیدروکربن‌های نفی خاک است (Rivera-Espinoza and Dendooven, 2010). می‌توان اگرچه در این مطالعه به‌طور مستقیم ریزجانداران مورد بررسی قرار نگرفته‌اند اما می‌توانند به عنوان عاملی برای کاهش هیدروکربن‌ها باشد. این بافت‌ها با مطالعات جهان‌نام‌ها و همکاران، 1395 و فندق و همکاران (2014) هم‌خوانی دارد. از طرف دیگر کمپوست قدرتی نگهداری، جذب و حرکت آب را در خاک افزایش می‌دهد. همچنین موجب اصلاح وضعیت عناصر غذایی و تهویه در خاک می‌شود که از این راه می‌توان اثرات منفی هیدروکربن‌ها را کاهش دهد (Wiley, 2006).

می‌شود که از این راه می‌توان اثرات منفی هیدروکربن‌ها را کاهش دهد. در این تحقیق مشخص شد که پیچ و کمپوست کمپوست کاهش هیدروکربن‌های نفی می‌شود که هموس با بافت‌های همکاران (2011) است. زیرا پیچ و کمپوست مقدار کربن بالا و درجه تخلخل نسبتاً زیاد می‌باشد که به عنوان گذای عمل می‌کند و موجب کاهش آلاینده‌‌های ناحیه ریشه شود.
هدی آلبور عبادی و همکاران

هامجنین پیچچار موجب افزایش بهبود ذرتسری به مواد مغذی و در نتیجه افزایش فعالیت میکروبی، بهبود بهرهوری خاک، دخیرهبرداری، کاهش تغییرات Lethmann and Lehmann and به دلیل افزایش آب و هوای ازدیاد نفوذ آب، حفظ رطوبت خاک و افزایش ظرفیت جذب می‌شود (۱). بنابراین همه این مواد باعث بهبود قابل گرفت و بهبود کاهش نفیتی از خاک می‌شود. که ناشی از خاصیت آروماتیکی، گروههای عاملی سطحی و خلی و فرج موجود در پیچچار است. زیرا گروههای عاملی همچون کربوهیدرایلکه، فنولیک هیدروکسیل که دارای اکسیژن سطحی می‌باشند پیچچار را قادر می‌سازد تا آلاینده‌های کاهش دهد (۲).

علاوه بر ترکیبات نفتی، کمپوننت‌های زباله شهروی و پیچچار موجب کاهش فلات سنگین در خاک شدند. زیرا مواد آلی همچون کمپوننت با تشکیل کمپلکس‌های پایدار با فلات سنگی در خاک و دارا (Clemente and Bernal, 2006) بودن مواد موجب جذب و تثبیت فلات سنگی در خاک می‌شود (۳). این نتایج همسو با نتایج فتوت و حلال نیا (۴) و کرومز و همکاران (۵) باشد که بیان کردن که کمپوننت‌های کمک به کاهش غلظت فلات سنگی در خاک می‌شود اما با نتایج رستگار و همکاران در سال ۱۳۹۲ مطابقت نداشته است. زیرا این پیشنهاد که کمپوننت موجب افزایش فلات سنگی در خاک می‌شود. میکانزم احتمالی برای تثبیت و کاهش فلات توسط پیچچار شامل تشکیل رسوبات فسفات، کربنات‌ها، اکسید فلات و همچنین اثرات متقابل الکترواستاتیکی (Uchimiya et al., 2010) بین کاتیون‌های فلز و همگونی عاملی فعال به‌وسیله pH خاک است. تعیین pH افزایش موجب کاهش تحرک و بویایی فلات سنگی می‌شود و از این طرف ظرفیت جذب خاک pH را برای جذب بیش از فلزات سنگی افزایش می‌دهد. البته نتایج pH و جایگاههای جذب فلزات در خاک که در این صورت مقدار فلز در خاک کاهش می‌دهد همچنین پیچچار دارای لیگاندهای آلی می‌باشد که این ترکیبات می‌توانند با فلات سنگی ایجاد کمپلکس کنند و از این راه تحرک فلات را در خاک کاهش دهد. در نتیجه غلظت این فلات در خاک کاهش می‌باشد (نجیزه‌زاده و همکاران، ۱۳۹۵). از طرف دیگر پیچچار به‌دلیل دارای سطح وریز بالا ظرفیت نیازی کاتیونی زیاد موجب کاهش آلاینده‌های خاک می‌شود (Beesley et al., 2010) که می‌باشد که بیان کردن پیچچار موجب کاهش فلات سنگی در خاک می‌شود. همچنین کرمی و همکاران در سال ۱۳۸۶ بیان کردن، به کارگیری تیمارهای پیچچار و کمپوننت در خاک آوده به فلات سنگین موجب کاهش این آلاینده‌ها می‌شود.
نتیجه‌گیری کلی

گیپوسی دو درصد بیشترین تأثیر را در کاهش هیدروکربن‌های نفتی خاک دارد. همچنین اثر نیم‌اواکلای اصلاح کننده (گیپوسی زباله شهروندی و بیورژان) باعث اثرات منفی و معنی‌داری بر کاهش غلظت فلزات نیکل و وانادیم خاک دارند. گیپوسی و بیورژان به فراهم نمودن شرایط بهینه رشد برای گیاه به جذب آلاینده‌ها توسط گیاه و در نهایت به ارتقاء فراودن گیاه‌پای‌هایی کمک کرده‌اند. با توجه به تنوع گونه‌های گیاهی در ایران و آلودگی مناطق مختلف به ترکیبات نفتی، استفاده از گیاه پای‌های در کنار اصلاح کننده‌های مانند بیورژان و گیپوسی می‌تواند به عنوان یک راهکار مؤثر و کاربردی در زیست‌پای‌های خاک‌های آلوده مطرح شود.

منابع

جهاناتاب، ا. جعفری، م، متشر زاده، ب، طولی، غ، ضرغام، ن. 1395. ارزیابی تناسیل گیاه‌پای‌های گیپوسی کیهانی مربوط در خاک‌های آلوده به ترکیبات نفتی با تأکید بر فلز سنگین نیکل. فصلنامه علوم محیطی (۱۳۳۴): ۷۰-۹۷.

جهاناتاب، ا. جعفری، م، متشر زاده، ب، طولی، غ، ضرغام، ن. 1395. ارزیابی گیونه‌های گیاهی مقاوم به فلزات سنگین در مناطق نفت‌خیز (مطالعه موردی: پارتاگ، گچساران). نشریه علمی پژوهشی مرتع (۴۱): ۴۲۵-۴۲۸.

حسنزاده، ا.، غلام‌علی‌زاده‌اهنگر، ا.، قربانی، م. 1395. تأثیر بیورژان بر جذب سرب و کادمیم لجن فاضلاب کارخانه‌های کاغذ توسط آفتابگردان (Helianthus Annuus L.) نشریه دانش آب و خاک، ۱۳۹۲: ۲۷۱-۲۷۷.

رستگاری، ا. جعفری، ا. ج، فردی باکی، م، کلاتری، رر، آلایندی، ا، قلی، زاده، غ. 1392. بررسی تأثیر گیپوسی مولود زازه‌ای شهروند مناسب و جذب فلزات سنگین از خاک شنی رسی لومی، مجله دانشگاه علوم پزشکی سیستان و بلوچستان، ۱۳۹۲: ۲۷۲-۲۷۷.

رضازاده کنکسی، ا، فتوحی قرفونی، ر. 1390. بررسی برخی صفات رشدی و فیزیولوژیکی گیاه آکاسیا در خاک آلوده به پساب نفتی. اولین همایش ملی گیاه‌پای‌های، ۲۷ بهمن ماه (Acacia nilotica L.) ۱۳۹۰، کرمان، ایران.

۲۷۴
هدی آلپو عیادی و همکاران

علوی، بختیار، س. ن.؛ احمدی مقدم، م.؛ پارسی، ا.؛ جعفرزاده، ن.؛ جهانپور، م.؛ محرمی، م.؛ رضایی‌نژاد، ی.؛ افشاری، م.؛ شریعتمداری، ح. ۱۳۸۶. اثرات تجمیع و باقیمانده لجن فضلات چهارآیی بر میزان آلودگی آبرسانی سرب و کادمیوم در ناحیه اکسیران. مجله شیمی و محیطی، ۱۱(۱): ۹۵-۱۱۲.

