تأثیر بیوجار و کمبوست زیاله شهری بر گیاهپالایی فلزات سنگین و Ziziphus spina-christi (L.) Willd

هدی آلی عبادی۱، مصطفی مرادی۲، استادیار جهانگیری۲

۱ دانشجوی کارشناسی ارشد، گروه جنگل‌داری، دانشکده منابع طبیعی، دانشگاه صنعتی خاتم الانبیاء، بهبهان
۲ استادیار گروه جنگل‌داری، دانشکده منابع طبیعی، دانشگاه صنعتی خاتم الانبیاء، بهبهان

چکیده

اگه شدن آل و خاک به ترکیبات نفتی بحرانی در حال رسیدن، این پژوهش بررسی تأثیر بیوجار (زغال زیستی) و کمبوست زیاله شهری بر گیاهپالایی، فلزات سنگین و هیدروکربن‌های کل نفتی خاک توسط گونه کل نفتی (Ziziphus spina-christi (L.) Willd) انجام شد. نتایج نشان داد پیامدهای کمبوست و بیوجار بهبود زیست念PRI و مقدار هیدروکربن‌های نفتی خاک ناشناخته داد که بخش بزرگی از فلزات سنگین به مقدار بالا پدیدار می‌گردد. در نتیجه، مقدار هیدروکربن‌های نفتی خاک مربوط به تیمار کمبوست در مقایسه با تیمار بیوجار بهبود یافت. نتایج این مطالعه نشان داد که توسعه پیشنهادات بهبود خاک ناشناخته جهت کاهش غلظت نیکل خاک در نیم‌دریافت

moradi4@gmail.com

۲۴۱
نشانه حفاظت زیست بوم گیاهان/ دوره ششم، شماره دوازدهم، بهار و تابستان ۱۳۹۷

به‌چارا بک‌درصد از سایر گیاهان می‌باشد، بیشترین مقدار نیکل‌مرتیک به شمار شده‌بود. مقایسه سیالگین‌های نبات داد
فلزات ونانید خاک در شیمی کمپوست یک مقدار کمتر از سایر گیاهان می‌باشد. در حالی که بیشترین مقدار ونانید مربوط
به نیکل شده بود در کمپوست و همچنین به شماره نخست از اهمیت به‌چارا و کمپوست در بهره‌وری خاک‌پردازی کنار در
خاک‌های آلاینده بهره‌مند است.
از آن‌ها (Acacia nilotica) (Calotropis procera) (Stipagrostis plumosa) (Sinapis) و Calotropis procera procura Stipagrostis plumosa

مقدمه

الوده‌بندان آب و خاک به ترکیبات مختلف آلی و معدنی، از نظر جنبه‌های زیستمحیطی و
سلامت انسان پی‌بی‌پا جات اهمیت است (Nascimento et al., 2006) مولد می‌رازی از طریق
نشت از آب آذری‌زیرزیکی، بالاشیگاه‌ها و غیره وارد محیط خاک و در نهایت آب شده و باعث ولگز
محیط‌زیستی می‌گردد. وجود این مواد در محیط بی‌کن می‌گردد. انواع سرطان می‌گردد، که چرا چه حاوی هزاران هیدروکربن ای است که سرطان زایی بسیاری از آن‌ها به
Total petroleum اشاره رشدی است (Gustafson, 1997). هیدروکربن‌های کل کنی (hydrocarbon, TPH
از جمله آلاینده‌ای زیستی می‌باشد که از طریق بالاشیگاه‌های نفت و گاز
وارد خاک و در نهایت آب‌های زیرزمینی می‌تواند. برنامه‌های خاص محققین برای پیش‌بینی آن بوده تا به نوعی
این آلاینده‌ها را از محیط‌زیست حذف کنند.

فناوری استفاده از گیاهان برای استخراج، کاهش و یا محروم کردن انقلا آلاینده‌ها به خاک و آب
راه‌کاری ارزان قیمت و دوستدار محیط‌زیست می‌باشد. گیاه‌پردازی یک فن آوری نوین است که با استفاده
از گیاهان برای جذب، جمع آوری و رفع آلاینده‌ها در بستر رشد از طریق فیزیولوژی، شیمیایی و
بیولوژیکی به‌طور گسترده عمل می‌کند. گیاهانی که قادر به حمل آلاینده‌های نفتی هستند سرعت
بالاپیش زیستی را در مناطق آلوده افزایش می‌دهند و از پیامدهای منفی زیستمحیطی می‌کاهد.

Sinapis و Calotropis procera procura Stipagrostis plumosa

همچنین محققین گیاه‌پردازی‌های مانند arvensis

به‌دلیل حضور آنزیم توانایی پیچیدن در شرایط ناسالمه زیستی (آلوده به ترکیبات نفتی)، به

عنوان انسانی آلاینده‌های نفتی در مناطق آلوده تفسیر خیز معرفی نموده‌اند (چهارتاب و همکاران،
رفا (Acacia nilotica) (۱۳۸۹) علاوه بر این رضاید که کم‌تری و فتوحی قربانی) گیاه آکاسیا
به‌دلیل تحمل نسبی به پساب‌های نفتی جهت مطالعات بعدی گیاه پالایی به‌منظور یافتن راهکارهای

۲۶۲
استقرار بهتر گیاه و افزایش کارایی گیاه بالایی پیشنهاد داده‌نده است. به نشان‌دهنده اسم智慧 که در محله‌نامه‌گرمسیری (Ziziphus spina-christi) نیز به‌عنوان گونه‌ای برای دوپرد در مناطق‌های مقیم (مظفریان، ۱۳۸۳) و درختی خاردار، همیشه سبز و دیرپزشک باشد. ارتفاع آن به ۱۰ متر می‌رسد و در مناطق مرطوب، همیشه سبز است. این درخت در مکان‌های پست، خشک و مرطوب، تراس رودخانه‌ها و حاشیه مزرعه قادر به رشد می‌باشد و در خاک‌های ابرافی دانه درشت با پایه سبک رشد بهتری دارد (Sadeghi, et al., 2011). در این روش‌های عمیق به‌منظور دستیابی به متاباغ آب‌های زیر زمینی عمیق در قسمت خشک کشاورزی استفاده می‌شود (Depommier, 1988). به‌طوری‌که این درخت به‌دلیل داشتن زن‌های مفید مانند زن‌های مقاومت به استرس‌های زنده و غیر زنده از اهمیت بالایی برخوردار است (Abdmishani and Shahnegat-Bushehri, 2001). اما امر بهره‌برداری که اثرات منفی آن را داشته باشد، از دیگر فاکتورهایی استفاده می‌شود. از جمله این فاکتورها برای افزایش کارایی گیاه بالایی استفاده از کودهای زبری و آلی می‌باشد. استفاده از کودهای آلی به‌عنوان تیمار در خاک‌های آلوده سبب کاهش تحرک فلزات سنگین شده‌امام Yang, 2005. به‌دلیل افزایش زیست‌توسط گیاه، موجب تجمع بیشتر فلزات در اندامهای هوایی گیاه می‌شود (Depommier, 1988). استفاده از کودهای آلی می‌توان به کمپیوست که نوعی کود آلی هوازی حاصل از فعالیت گونه-هایی از کرم خاک، است و بیچاره که نوعی زغال تهیه شده از زیست‌توسط گیاهی و نقابی کشاورزی است، اشاره کرد (Ahmad et al., 2012).

تحقیقات نشان داده که برخی گونه‌ها مثل Populus nigra می‌تواند به‌عنوان کاهش ۸۰ درصدی میزان هیدروکربن‌های نفی‌خاک (Don et al., 2012) به‌عنوان اصل‌الکنده شود: اما استفاده از تیمارهای اصلاح-کندنی مثل کمپیوست و بیچاره می‌تواند بهتر از افزایش گیاه بالایی فلز سنگین نیکل (چینی و همکاران, ۱۳۹۵) و همچنین کاهش هیدروکربن‌های آرومیک جلوگیری خاک شود (Feng et al., 2014). به‌طوری‌که نشان‌دهنده اهمیت بیچاره و کمپیوست به‌عنوان عوامل کمکی در جهت افزایش قدرت گیاه بالایی گیاهان، می‌باشد (Barati et al., 2017; Oliveira et al., 2017). به علاوه، جهت هیدروکربن‌های کل نفت به‌وسیله گیاه Vetiveria zizanioides

243
تشریح حفاظت زیره سبز نیز مورد بررسی قرار گرفته است و نتایج مشخص کرد که است که

اوهای نیز مورد بررسی قرار گرفته است و نتایج مشخص کرد که است که

V. zizanioides

یونیpeer با دو هدف هیدروگرین‌های کل نفتی دارد (کردا و نکذستان، 1394).
\[
\text{Z. spina-christi}
\]

بباید از مناطق کشورمند به‌خصوص مناطق چوبی از قطبهای مهم نفتی خارجی‌میانه محروم

می‌شود. بنابراین چنین مناطقی این پتانسیل‌ها دارد که به سالانه حجم وسیعی از آلاینده‌های بالقوه

سمی و خطرناکی را به محیط زیست وارد کند که منجر به تحلیل آثار سوئی بر پیکرهای زیست‌بوم

می‌شود. از طرفی در چنین مناطقی استفاده از روش‌های کم هزینه و سازگاری با محیط‌زیست در رفع

آلودگی‌ها کمتر پرداخته شده است. لذا تحقیق حاضر با هدف بررسی تأثیر بیوچار و کمیوست زباله

شهری بر گیاه‌پالایی فلات بسیاری و هیدروکرین‌های کل نفتی (TPH) خاک توسط گونه کنار

نجام شد.

مواد و روش

خاک مورد استفاده در کشت گلداهن، خاک آلوده به سلج نفتی می‌باشد که از منطقه چوب سرخ

روستایی از دهستان گیلان مسجد سلمان، واقع در ۵۱ کیلومتری ۳۵°۰۵′ شمالی و ۱۳۳°۴۷′ شرقی

۱/۲۳ ۴۹ ملی‌سیلیمانی جمع‌آوری شد. این محل یکی از مکان‌های لباس‌شده لجن‌های نفتی واحد

شماره ۹ کشت به‌پردازی نفت و گاز مسجد سلمان می‌باشد. خصوصیات فیزیکی و شیمیایی خاک

مورد استفاده در این تحقیق در جدول شماره ۱ آورده شده است. برای اعمال تیمارهای کمیوست زباله

شهری و بیوچار کمیوست زباله شهری، کمیوست و بیوچار در سه سطح صفر، ۱ و ۲ درصد به‌صرفه

ورزی به خاک‌ها اضافه شدند. در جدول ۲ مشخصات کمیوست و بیوچار استفاده شده در تحقیق آن

شهده است. همچنین در کار تیمار شاهد با گونه کنار (تیمار که کمیوست و بیوچار صفر درصد بود)

تیمار شاهد بدون گونه کنار (بدن گیاه) نیز بررسی شد.

برای انجام این تحقیق از نهال‌های یکساله گونه کنار استفاده شد. نهال‌های کنار در معرض

تیمارهای ذکر شده به پالای دو قرار گرفته و بعد از پایان دوره رشد گیاه (دوره ۶ ماهه)، از خاک گلداهن

نمودن‌بندی و فاکتورهای مورد نظر به منظور تعیین تأثیر گیاه و تیمارهای اصلاح‌کنند به روز

هیدروگرین‌های کل نفتی و فازات سنگین نیکل و وانادیوم بررسی شد. برای نمون‌بندی همه خاک

گلداهن خارج شد و سپس از هر گلداهن به‌صورت جداگانه نمونه‌ها برداشت شدند.
تهیه کمیسیون زیبای شهروی و پوچار

نمودهای کمیسیون زیبای شهری از استبانگه حلقو در سازمان مدیریت پسماند شهرداری گرج تهیه شد که کمیسیون مَلْخوَت زیبایی جز شهروی و رنگ فهودی تهیه شده. نمودهای کمیسیون زیبای شهروی در هر دو آزاد شخش شد. سپس نمونه‌ها آسیب و از الک ۲ میلی‌متری عبور داده شدند تا به صورت پک‌کرتش آماده شوند. جهت تهیه پوچار نمونه‌ها را ابتدا در داخل ظروف در بار ریخته شدند. سپس به‌منظور ایجاد شرایط کم یا بدون اکسیژن در داخل کوره و ظروف در دار، تعدادی شمع روشن کرده تا اکسیژن باقی مانده در درون کوره و ظرف تمام شود تا شرایط برای انجام فرآیند پرولیز فراهم شود. در نهایت نمونه‌ها به مدت ۶ ساعت در دمای ۵۰۰ درجه سانتی‌گراد در داخل کوره قرار داده شدند تا پوچار تهیه شود.

تعیین مقدار کل فازات سنگین نیکل و والاندیم در نمونه‌های کاک

بعد از آنکه نمونه‌های کاک گلدن‌ها در دمای ۷۰ درجه سانتی‌گراد در آن خشک شده و از الک ۲ میلی‌متری عبور داده شدند، آماده عصاره‌گیری شدند. در ابتدا ۲ گرم خاک خشک و الکشده وزن شد و سپس ۱۵ سی سی اسید نیتریک ۴ نرم الاضافه شد و با دمای ۶۰ درجه به مدت ۲۰ ساعت داخل اجاق بن ماری قرار گرفت. سپس نمونه‌ها از کانگ صاف و اتم ۲۴ عبور داده شد و در بالین ۵۰ سی‌سی یا آب دوبار تقطیر به حجم ۵۰ سی‌سی رسید (APHA، ۱۹۹۸). در این‌گام بعد نمونه‌ها از کانگ استانت سلطزی ۳۲۳/۰ عبور داده شد تا برای قرارت با دستگاه ICP-OES (مدل GBC Avanta) استرالیا آماده شوند.

اندازه‌گیری هیدروکربن‌های کل نفتی (TPH) در خاک

برای اندازه‌گیری میزان هیدروکربن‌های کل نفتی در خاک از روش آراز حلقو و حفاظت محیط‌زیست آمریکا (EPA-3550) استفاده گردید. ابتدا خاک را درون هاوی گوییده، یک گرم خاک خشک را وزن نمودهای درون لوله‌های درب‌دار سانتریفیوز ریخته، ۱۰ میلی‌لیتر محلول کلروفان (نسبت 1:1) به فاصله نمودهای لوله‌ها را به مدت ۴ دقیقه تکان داده و سپس آن را به مدت ۵ دقیقه با دور ۳۰۰۰ دور در دقیقه سانتریفیوز نموده تا رسوبات تنششین گردند. پس از سانتریفیوز کردن یک میلی‌لیتر از مابین
رویبی را برداشته و برای اندازه‌گیری میزان ترکیبات هیدروکربنی آن مورد استفاده قرار گرفت (Tehrani et al., 2006; Hutchinson et al., 2001) سپس به‌وسیلهٔ دستگاه گروماتوگرافی گازی از نوع بوئنیسیسون شعله‌ای مدل Agilent 7890A مقدار کل هیدروکربن‌ها اندازه‌گیری شد.

جدول ۱- برخی از مشخصات خاک اولیه گلدان‌ها

<table>
<thead>
<tr>
<th>متغیرها</th>
<th>میزان اندازه‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>هیدروکربن‌های کل نفتی (mg/kg)(TPH)</td>
<td>۱۹/۱۶</td>
</tr>
<tr>
<td>اسیدیت (pH)</td>
<td>۷/۵</td>
</tr>
<tr>
<td>قابلیت هیدات الکتریکی (EC) (dS/m)</td>
<td>۲/۸۸</td>
</tr>
<tr>
<td>کربن آلی (درصد)</td>
<td>۲/۴۳</td>
</tr>
<tr>
<td>نیتروژن (N) (درصد)</td>
<td>۱/۸۴</td>
</tr>
<tr>
<td>یون‌سازی (K) (mg/kg)</td>
<td>۲/۰۳</td>
</tr>
<tr>
<td>فسفر (P) (mg/kg)</td>
<td>۹</td>
</tr>
<tr>
<td>رس (درصد)</td>
<td>۶</td>
</tr>
<tr>
<td>نیکل کل (mg/kg)</td>
<td>۲/۲</td>
</tr>
<tr>
<td>والنیاژ کل (mg/kg)</td>
<td>۹/۰</td>
</tr>
</tbody>
</table>

جدول ۲- نتایج تجزیه کمپوست زباله شهری و بوچار کمپوست زباله شهری
تجزیه و تحلیل داده‌ها

<table>
<thead>
<tr>
<th>پوچار کمپوسیت زیالت</th>
<th>مقدار</th>
<th>کمپوسیت زیالت شهری</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>کرین کل (٪)</td>
<td>16/77</td>
<td>فسفر (٪)</td>
<td>37/56</td>
</tr>
<tr>
<td>نیترژن (٪)</td>
<td>0/75</td>
<td>هیدرژن (٪)</td>
<td>3/60</td>
</tr>
<tr>
<td>یتاسیم (٪)</td>
<td>0/18</td>
<td>وزن محصول ظهیری</td>
<td>6/54</td>
</tr>
<tr>
<td>وزن محصول ظهیری</td>
<td>9/36</td>
<td>هدایت الکتریکی (dS/m)</td>
<td>6/89</td>
</tr>
<tr>
<td>pH</td>
<td>6/89</td>
<td>هدایت الکتریکی (dS/m)</td>
<td>9/15</td>
</tr>
<tr>
<td>درصد رطوبت</td>
<td>6/89</td>
<td>(عمودی)</td>
<td>9/15</td>
</tr>
</tbody>
</table>

این ازمایش در سه تکرار برای هر تیمار و در قابل طرح گام‌آملاً تصادفی انجام گرفت. کلیه داده‌های موجود با استفاده از آزمون‌های کلاموگروف اسمیرنو夫 و به منظور بررسی و تجزیه و تحلیل آماری اطلاعات از آزمون یک طرفه استفاده شد. نتایج در صورتی که بین ویژگی‌های مشابه با بسته‌بندی وجود داشت از آزمون مقایسه میانگین چند دامنه دانگین برای تعیین اختلاف بین گروه‌ها استفاده شد. کلیه آنالیزها در محیط نرم‌افزار Excel نسخه 16 انجام شد. نمونه‌های نمودارها با استفاده از نرم‌افزار Excel خام و EES رسم شدند.

نتایج

بررسی تأثیر کاربرد تیمارها اصلاح کننده بر گیاه‌پایی فلز نیکل

نتایج نشان داد اثر تیمارها اصلاح کننده (کمپوسیت زیالت شهری و پوچار) بر عفونت فلز نیکل خاک معنی‌دار بود (جدول 3). مقایسه میانگین‌ها نشان داد عفونت نیکل خاک در تیمار پوچار یک درصد کمتر از سایر تیمارها می‌باشد، بیش از 8/3 درصد مقدار نیکل خاک مربوط به تیمارها شاهد با گونه
نیتریو حفاظت زمین برای دو دوره ششم شماره دوازده، بهار و تابستان ۱۳۹۷

کار و شاهد بدون کار بود (شکل ۱) با توجه به شکل ۱، بیوجار یک درصد از سایر تیمارها مناسبتر می‌باشد و عنصر نیکل را بیشتر گذر کرده است.

شکل ۱ - مقایسه میزان‌گی اثر تیمارهای مورد بررسی بر روی گلف نیکل خاک (حروف مختلف نشان‌دهنده وجود تفاوت معنی‌دار بین تیمارها می‌باشد)

جدول ۳- تجزیه واریانس اثر تیمار بر نیکل خاک

<table>
<thead>
<tr>
<th>Sig.</th>
<th>درجه آزادی</th>
<th>میزان‌گی</th>
<th>منیجر</th>
<th>بین گروه‌ها</th>
<th>داخ گروه‌ها</th>
<th>کل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۶۵</td>
<td>۶</td>
<td>۱۲</td>
</tr>
<tr>
<td>۲۹۵۵۰۰۰۰ **</td>
<td>۶۵</td>
<td>۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۶۷۳۶</td>
<td>۶</td>
<td>۱۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** در سطح نیک درصد معنی‌دار
بررسی تأثیر کاربرد تیمارهای اصلاح‌کننده بر گیاه‌پایی فیل و اندام

اثر تیمارهای اصلاح‌کننده کمپوست زباله شهری و پیچ بر غلتگی و اندام خاک معنی‌دار بود (جدول ۴). مقایسه میانگین‌ها نشان داد غلتگی و اندام خاک در تیمار کمپوست یک درصد كمتر از سایر تیمارها می‌باشد. بیشترین مقدار و اندام خاک مربوط به تیمار شاهد با گونه کار و تیمار شاهد بدون گونه کار بود (شکل ۲). همانطور که در شکل ۲ مشاهده می‌شود تیمار کمپوست یک درصد از همه مناسب‌تر می‌باشد و فیل و اندام را بیشتر از سایر تیمارها جذب کرده است، البته قابل ذکر است بین کمپوست یک درصد و کمپوست دو درصد تفاوت معنی‌داری وجود ندارد.

شکل ۲- مقایسه میانگین اثر تیمارهای مورد بررسی بر روی غلتگی و اندام خاک (حرف‌های متغیر نشان دهنده وجود تفاوت معنی‌دار بین تیمارها می‌باشد)

۲۷۹
تشریح حفاظت زیست بوم گیاهان/ دوره ششم، شماره دوازدهم، بهار و تابستان ۱۳۹۷

جدول ۴- تجزیه واریانس اثر تیمار بر وانادیم خاک

<table>
<thead>
<tr>
<th>متغیر</th>
<th>درجه آزادی</th>
<th>میانگین مربعات</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>بین کشورها</td>
<td></td>
<td></td>
<td>۰/۰۱۴۴</td>
</tr>
<tr>
<td>وانادیم خاک، داخل کشورها</td>
<td></td>
<td></td>
<td>۱/۱۳۹</td>
</tr>
<tr>
<td>کل</td>
<td></td>
<td></td>
<td>۱۷</td>
</tr>
</tbody>
</table>

**: در سطح یک درصد معنی دار

اثر تیمارها بر میزان هیدروکرین‌های نفیس خاک (TPH)

اثر تیمارها، اصلاح کننده (بیوچار و کمبوست) بر مقدار هیدروکرین‌های کل نفیس خاک در سطح یک درصد معنی‌دار بود (جدول ۴). نتایج حاصل از بررسی اثر تیمارها بر مقدار هیدروکرین‌های کل نفیس خاک نشان داد که بیشترین مقدار هیدروکرین‌های خاک مربوط به تیمار شاهد بدون گونه کنار و کمترین مقدار هیدروکرین‌های خاک مربوط به تیمار کمبوست دو درصد بود. همانطور که شکل ۳ نشان می‌دهد؛ بین تیمارهای کمبوست یک و دو درصد تفاوت معنی‌داری وجود دارد. همچنین بین تیمارهای شاهد با گونه کنار و شاهد بدون گونه کنار تفاوت معنی‌داری وجود ندارد (شکل ۳).
جدول ۵- تجزیه واریانس اثر تیمار بر هیدروکرین‌های کل نفتی خاک

<table>
<thead>
<tr>
<th>متغیر</th>
<th>درجه آزادی</th>
<th>میانگین مربعات</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>بین گروه‌ها</td>
<td>۵</td>
<td>۳۳/۹۷۱**</td>
<td>۰/۰۳</td>
</tr>
<tr>
<td>هیدروکرین‌های کل نفتی خاک داخل گروه‌ها</td>
<td>۱۲</td>
<td>۴/۷۲۶</td>
<td></td>
</tr>
<tr>
<td>کل</td>
<td>۱۷</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۲- مقایسه میانگین اثر تیمارهای مورد بررسی بر هیدروکرین‌های کل نفتی خاک
بحث و نتیجه‌گیری

در این تحقیق مشخص شد که اثر فاکتورهای اصلاح کننده (بیوجار و کمیوست) بر مقدار هیدروکربن‌های کل نفتی حاصل افزایش جدی آن‌ها شودند. زیرا بیش‌ترین مقدار هیدروکربن‌های باقیمانده در حاکی مربوط به تیمار نهاد و کمترین مقدار هیدروکربن‌های باقیمانده در حاکی مربوط به تیمار کمیوست بک دو درصد بود.

کنار به عنوان گونه مورد استفاده در این تحقیق با حضور بیوجار و کمیوست باعث کاهش میزان هیدروکربن‌های کل نفتی حاکی شد که همسو با نتایج دیگر محققین می‌باشد (Don et al., 2012). به‌طورکلی گونه‌های گیاهی با ترشح ترکیبات آلی مانند گلوکز، انتزیم و کروپیراداتوری باعث افزایش نشانه‌گذاری دارند که در ناحیه نشانه‌گذاری مناسب از کربن و انرژی را برای نرسیدن به ناحیه رشته فراهم می‌سازد. باعث نجف مقدار زیادی از هیدروکربن‌های کل نفتی حاکی می‌شود (علی‌بخترودن، 1393) همجنینگی گیاهان قادرون از طریق رهاسازی عناصر غذایی و ترشحات خود در حاکی و انتقال اکسیژن به ناحیه رشته خود موجب تحریک و افزایش فعالیت جمیت میکروی تخیری کردن‌کننده آلوده‌های نفتی شوند.

کمیوست با افزایش میزان مواد مغذی حاکی و تحریک رزگانداران باعث حاصلخیز شدن حاکی می‌شود (Zhen et al., 2014) رس جانداران از هیدروکربن‌ها به عنوان منبعی برای افزایش انرژی و کربن، مورد استفاده می‌کند و هیدروکربن‌ها را به آب و دیگر کربن‌های تبدیل می‌کند و نتیجه آن کاهش هیدروکربن‌های نفتی در حاکی است (Rivera-Espinoza and Dendooven, 2004). بنابراین اجرای در این مطالعه به‌طور مستقل رزگان‌داران مورد بررسی قرار گرفته‌اند. واگذار می‌توانند به عنوان عاملی برای کاهش هیدروکربن‌ها باشد. این یافته‌ها با مطالعات چهاربند و همکاران، 1395 و فنگ و همکاران (2014) هم‌خوانی دارد. از طرف دیگر کمیوست قدرت نگهداری، جذب و حرکت آب را در حاکی افزایش می‌دهد. همجنین موجب ایجاد وضعیت غذايی و تنها به حاکی می‌شود که از این راه می‌توان اثرات منفی هیدروکربن‌ها را کاهش دهد (Feng et al., 2006). می‌شود که از این راه می‌توان اثرات منفی هیدروکربن‌ها را کاهش دهد.

در این تحقیق مشخص شد که بیوجار نیز همانند کمیوست کاهش هیدروکربن‌های نفتی می‌شود که همسو با یافته‌های هاله و همکاران (2011) است. زیرا بیوجار دارای مقدار کربن بالا و درجع تخلخل سنگ‌یا زیاد می‌باشد که به عنوان جذاب عمل می‌کند و موجب کنترل آلوده‌های...
هایی محیطی می‌شود (Yu et al., 2010)، همچنین بیوجار موجب افزایش بهبود دسترسی بر مواد مغذی و در نتیجه افزایش فعالیت میکروژ، بهبود بهرهوری خاک، دخیل‌سازی گرین، کاهش تغییرات Lehmann and (2009) آب و هوای ازدیاد نفوذ آب، حفظ رطوبت خاک و افزایش ظرفیت جذب می‌شود. بنابراین همه این مواد باعث بهبود فرآیند جذب هیدروکریم‌های نفتی از خاک می‌شود که با ناشی از خاصیت آرومئیکی، گروه‌های عمومی سطحی و خلی و فرگ موجود در بیوجار است. زیرا گروه‌های عمومی هی‌چچن کربوکسیل، فنولیک هیدروکسیل که دارای اکسیژن سطحی می‌باشند بیوجار را قادر می‌سازد تا ارتباطها را کاهش دهد (Yu et al., 2009).

علاوه بر ترکیبات نفتی، کمپوست زباله شری و بیوجار موجب کاهش فلزات سنجین در خاک شدند. زیرا مواد آئی هی‌چچن کمبودست با تشکیل کمپلکس‌های پایدار با فلزات سنجین در خاک و دارا بوادن مواد موجب جذب و تثبیت فلزات سنجین در خاک می‌شود (Clemente and Bernal, 2006) این نتایج همسو با نتایج فتوت و حلال نیا (1992) و کرمی و همکاران (2011) باشند که پیان کردن که کمبودست موجب کمک به کاهش غلظت فلزات سنجین در خاک می‌شود. اما با نتایج رستگاری و همکاران در سال 1392 مطالعه ناشتی است. زیرا آنها پیان کردن که کمبودست مواد افزایش فلزات سنجین در خاک می‌شود. مکانیسم احتمالی برای تثبیت و کاهش فلزات توسط بیوجار شامل تشکیل رسوبات سفینه، کریستال باکسی فلزات و همچنین اثرات متقابل الکترواستاتیکی (Uchimiya et al., 2010) بین کاتیون‌های فلز و گروه‌های عمومی فعال به‌وسیله pH خاک است.

فلزات نفتی موجب کاهش تحرک و پورپایی فلزات سنجین می‌شود و از این طریق ظرفیت جذب خاک pH را برای جذب پیوندهای فلزات سنجین افزایش می‌دهد. گاهی این اثر در نتیجه ضعف قدرت فلز در خاک کاهش می‌دهد و چنین بیوجار درای لیگاندهای آلی می‌باشد که این اثرات این مواد با فلزات سنجین ایجاد کمپلکس کنند و از این راه تحرک فلزات را در خاک کاهش دهد. در نتیجه غلظت این فلزات در خاک کاهش می‌باید (جرنگراد و همکاران؛ 1396). از طرف دیگر بیوجار به‌وسیله دارای سطح ویژه بی‌اکسید سطح ابتیالی کاتیونی زیاد موجب کاهش انرژی خاک می‌شود (Beeley et al., 2010) که پیان کردن بیوجار موجب کاهش فلزات سنجین در خاک می‌شود. همچنین کرمی و همکاران در سال 1386 بیان کردند، به‌کارگیری تیمارهای بیوجار و کمبودست در خاک آنها به فلزات سنجین موجب کاهش این الیاف می‌شود.
نتیجه‌گیری کلی

کمپوست دو درصد بیشترین تأثیر را در کاهش هیدروگین نفوذی خاک دارد. همچنین اثر
تیمارهای اصلاح‌کننده (کمپوست زباله شهری و بیوچار) باعث اثرات مثبت و معنی‌داری بر کاهش
غلظت فلزات نیکل و وانادیم خاک دارد. کمپوست و بیوچار با قارچان نمونه شرایط بهینه رشد برای
گیاه به جذب این اندیشه توسط گیاه و در نهایت به ارتقای فرآیند گیاه‌پالایی کمک کرده. با توجه به
تنوع گونه‌های گیاهی در ایران و آلودگی مناطق مختلف به ترکیبات نفتی، استفاده از گیاه‌پالایی در
کنار اصلاح کننده‌های مانند بیوچار و کمپوست می‌تواند به عنوان یک راهکار مؤثر و کاربردی در
پیشبرد آلوده‌ای خاک‌های آلوده مطرح شود.

منابع

جهانتاب، ا. جغرافی، م، متشهرزاده، ب، طولی، ع، ضرگام، ن، 1395. ارزیابی پتانسیل گیاه‌پالایی
گونه‌های گیاهی مرطوب در خاک‌های آلوده به ترکیبات نفتی با تأکید بر فلز سنگین نیکل. فصلنامه

جهانتاب، ا، جغرافی، م، متشهرزاده، ب، طولی، ع، ضرگام، ن، 1395. ارزیابی گونه‌های گیاهی مقاووم
به فلزات سنگین در مناطق نفتکشی (مطالعه موردی: پارتا کجساران). انتشار علمی پژوهشی
مرتیع، 8(2): 249-41.

حجرزیزاده، ا، فلکمنیزاده، أونگر، ا، قربانی، م، 1395. تأثیر بیوچار بر جذب سرب و کادمیم لجن
پاستیلار کارانه‌های کاغذ توسط آفتابگردان (Heliantus Annuus L) (نشریه دانش آب و خاک،

رستگاری، ا، جغرافی، ا. ح، فرآذکیاکی، م، کلاذری، ر، آلایدی، ا، قلزیزاده، ع، 1392، بررسی تأثیر
کمپوست مولوت زباله شهری بر میزان نشیب و جذب فلزات سنگین از خاک شنی. مجله دانشگاه علوم پزشکی

رضایی‌کنترشی، ا، فتوحی قریبی، ر، 1390، بررسی برخی صفات رشدی و فیزیولوژیک گیاه آکاسیا
در خاک آلوده به پساب نفتی، اولین همایش ملی گیاه‌پالایی، 27 بهمن ماه
(Acacia nilotica L.) (نشریه ایران، 1390، کرمان، ایران.

274
علمی‌های گیاه‌پزشکی در حیفته‌های نفتی از خاک و بی‌آلی‌سیستم‌بناً استفاده از آلروپس
لبنتراس. مجله سلامت و محیط فصلنامه علمی پژوهشی بهداشت ایران، (1): 63-84.
فوتی، اولیا. 1392. تأثیر کمیتی زیانهای شهری و لجن فاضلاب بر توزیع فرم‌های مختلف
عناصر کادمیوم، سرب و نیکل افزوده شده به دو خاک آهکی، نشریه میدیریت خاک و تولید پایدار،
فیاض، ب.، بابر، 1395، اثر بارزدانگی نفت خام بر عملکرد رویشی و فیزیولوژیکی بذر و نهال
گونه‌های کنار، کهور، آکاسیا و آفتابی. مجله پویش‌نامه کاربردی، (16): 31-41.
گردنی، ر.، تکستان، اولیا. 1394. حیفه کل هیدروکربن‌ها نفتی با استفاده از گیاه ویتامین و تغییرات
جمعیت میکرو‌وری در خاک‌های آلوده به نفت در منطقه اهواز. مجله دانشگاه علوم پزشکی مازندران،
1391(1): 78-87.
کرمی، م.، رضایی‌نژاد، ی، افونی، م.، شریعتمداری، ح. 1386. اثرات تجمعی و باقیمانده لجن فاضلاب
شهری بر غلظت عناصر سرب و کادمیوم در خاک و گندم. مجله آب و خاک (مجله علوم و فنون
کشاورزی و منابع طبیعی)، (11): 9-158.
Effects of pyrolysis temperature on soybean stover-and peanut shell derived bio-
char properties and TCE adsorption in water. Bioresource Technology, 118:
536-544.
APHA, AWWA, WEF. 1998. Standard methods for the examination of water and
wastewater. Washington. 19 P.
Barati, M., Bakhtiari, F., Mowlia, D., Safarzadeh, S. 2017. Total petroleum hydro-
carbon degradation in contaminated soil as affected by plants growth and bio-
Beesley, L., Moreno-Jimenez, E., Gomez-Eyles, J.O. 2010. Effects of biochar and
greenwaste compost amendments on mobility, bioavailability and toxicity of
inorganic and organic contaminants in a multi-element polluted soil. Environ-
mental Pollution, 158(6): 2282-2287.
Clemente, R., Bernal, M.P. 2006. Fractionation of heavy metals and distribution of

