تأثیر بیوجار و کمبوست زباله شهری بر گیاهپالایی فلزات سنگین و Ziziphus spina-christi (L.) Willd

هدی آلی عبادی، مصطفی مرادی، استادیار جهانگیری

1 دانشجوی کارشناسی ارشد، گروه جنگل‌داری، دانشکده منابع طبیعی، دانشگاه صنعتی خاتم الانبیاء، بیهق، بیهق
2 استادیار گروه جنگل‌داری، دانشکده منابع طبیعی، دانشگاه صنعتی خاتم الانبیاء، بیهق، بیهق
3 استادیار گروه علم مرتع، دانشکده منابع طبیعی، دانشگاه اسلامی، فسا

تاریخ دریافت: 1396/5/19 تاریخ پذیرش: 1396/11/19

چکیده

الوه شدن آب و خاک به ترکیبات نفتی بخشی از سرمایه‌ی بیوجار و کمبوست زباله شهری است. هدف این پژوهش بررسی تأثیر بیوجار و کمبوست زباله شهری بر گیاه‌پالایی فلزات سنگین و هیدروگرینهای کل نفتی (Ziziphus spina-christi (L.) Willd) در توسط کردن گونه کلی است. برای این منظور، افت شد. از آمیابانی آزمایش در سه تکرار و در هر یک از این تکرارها، روش تجربی در مطلوبی از امکان اضافی تجهیزات و تزئینات آزاد، از ابزارهای STESS و داشتن داده‌های از این تحقیق است. نتایج نشان داد که بیوجار و کمبوست زباله شهری بر مقادیر هیدروگرینهای نفتی خاک، تنگی می‌باید و پایه کامی بازیابی آن در شبدیده، نتایج نشان داد که بیوجار و کمبوست زباله شهری بر مقادیر هیدروگرینهای نفتی خاک، تنگی می‌باید و پایه کامی بازیابی آن در شبدیده، نتایج نشان داد که بیوجار و کمبوست زباله شهری بر مقادیر هیدروگرینهای نفتی خاک، تنگی می‌باید و پایه کامی بازیابی آن در شبدیده، نتایج نشان داد که بیوجار و کمبوست زباله شهری بر مقادیر هیدروگر

moradi4@gmail.com

نوبنده مسئول: 97
نتایج حفاظت زیست های گیاهان/ دوره ششم، شماره دوازدهم، بهار و تابستان 1397

پیچانه یک درصد از سایر گیاهان می‌باشد، بیشترین مقدار نیکل مربوط به نیکل شاهد بود. مقاومت سیاه‌پره‌های نازنین داد. این گیاهان در اکثر حالت‌ها در زمین‌های مبتنی بر نیکل شاهد بوده و میزان نیکل در آنها نیز بلند بوده است.

از این سیبیل حیاتی است.

مقدمه

الوده‌های متنوع آب و خاک به ترکیبات مختلف آب و معدنی، از نظر جنبه‌های زیست‌محیطی و سلامت انسان بسیار حائز اهمیت است (Nascimento et al., 2006). مواد نفتی می‌تواند از طریق شناس زیرزمینی، بالا‌اشگاهی و غیره، وارد محیط خاک و در نهایت آب شده و باعث آب‌دستگی محیط‌زیست می‌گردد. وجود این مواد نفتی در محیط‌زیست و جرخه‌های غذایی و آب منجر به بروز انواع سرطان می‌گردد و چرا که حاوی هیدروکربن‌های آبی است که سرطان زای‌سپاری بسیاری از آن‌ها به Total petroleum. هیدروکربن‌های کل نفت (Gustafson, 1997) از جمله آلاینده‌های زیستی می‌باشند که از طریق بالا‌اشگاه‌های نفت و گاز وارد خاک و در نهایت اس‌های زیرزمینی می‌شود. بنابراین همواره نشان می‌دهد که این نوع‌های آلاینده‌ها را از محیط‌زیست حذف کند.

فناوری استفاده از گیاهان برای استخراج، کاهش و به‌عنوان محدود کردن انتقال آلاینده‌ها به خاک و اب را کاری ارزان قیمت و دوستدار محیط‌زیست باشد. گیاه‌هایی که فن آوری نوبه‌ی است که با استفاده از گیاهان برای اجرای جذب، جمع آوری و رفع آلاینده‌ها در استر بسته‌ای از طریق آلاینده‌ای که بی‌پیشنهایی به طور کلی کرده می‌کند. گیاه‌هایی که قادر به تحلیل آلاینده‌های نفتی هستند سرعت بالا بازی زیستی را در مناطق آلوده افزایش می‌دهد و از پیامدهای منفی زیست‌محیطی می‌کاهد. Sinapis، Calotropis procera، Stipagrostis plomusa و Calotropis procera، Stipagrostis plomusa همچنین مقایسه گیاه‌های مانند Arvensis، بدلیل حضور قراری و توانایی برای در شرایط ناسازگار آلاینده‌های آلوده به ترکیبات نفتی، به arvensis عنوان اندازه‌گیری آلاینده‌های نفتی در مناطق آلوده ناحیه معرفی می‌شود (جهانیه، اکاسیا، را (Acacia nilotica) 1395). علاوه بر این رضایت که در و فتوحی قروئینی (1390 کیهان یکه، به‌دلیل تحلیل نسبه به پساب‌های نفتی جهت مطالعات به‌دست گیاه‌ها با بی‌منظور بافت‌رای اکار‌های 262
استفاده بهتر گیاه و افزایش کارایی گیاه بالایی پیشنهاد دادند که نشان دهند بهبود اهمیت و نقش گیاهان در کاهش آلودگی بیشتر می‌باشد. کنار آلودگی وضعیت گونه‌ای برای در منطقه (Ziziphus spina-christi) بالعصر منطقه بیشتری برداشته شده است (منظوران، 1363 و درخت خارداره، همین‌طور سبز و شکن می‌باشد. افزایش ان به 10 متر می‌رسد و در منطقه مرطوب، همین‌طور سبز است. این درخت در مکان‌های پست، خشک و مرطوب، تراس رودخانه‌ها و حاشیه مزارع قادر به رشد می‌باشد و در کارکرد گیاهی ارتباط دانه درشت با پایه سبک رشد بهتر دارد (Sadeghi، 2011). در حالی که در حیطه‌های عمیق به منظور دستیابی به منابع آب گیاه زیبایی عمیق در فصول خشک کمیاب سابقه (Depommier، 1988). همچنین این درخت به دلیل داشتن ژن‌های میاندیدر زن‌ها مقاومت به استرس‌های زنده و غير زنده از اهمیت بالایی برخوردار است (Abdmishani and Shahnegat-Bushehri، 2001).

اما امرزه برای کاهش اثرات منفی آلاینده در کنار گیاه بالایی، از دیگر فرآیندهای نیز استفاده می‌شود. از جمله این فرآیندها برای افزایش کارایی گیاه بالایی استفاده از کودهای زیستی و آلی می‌باشد. استفاده از کودهای آلی بهعنوان تیمار در کارکرد گیاه آلوده سبز کاهش تحرک فلزات سنگین شده اما (Yang، 2005). آزمایش‌های آلی می‌توان به کمیسیون که نوعی کود آلی هرزا خالص از فعالیت گونه‌هایی که در کرم خاکی است و بیوجار که نوعی زغال تهیه شده از زیست‌شناسی گیاهی و نقش اکوسیستمی کشور و باید اشاره کرد (Ahmad et al.، 2012)

تحقیقات نشان داده که برخی گونه‌ها مثل (Populus nigra) می‌تواند باعث کاهش 80 درصدی میزان هیدروکسی ناشی از فلزات آلوده (Don et al.، 2012). این استفاده از تیمارهای اصلاح‌کننده مثل کمیسیون و بیوجار می‌تواند باعث افزایش کارایی بالایی فلز سنگین تیتان و همکاران، (Feng et al.، 2014) و همچنین کاهش هیدروکسی ناشی از اشکالی دارچینی خاک شود. (Feng et al.، 2014) که نشان دهنده اهمیت بیوجار و کمیسیون بهعنوان عوامل کمکی در جهت افزایش قدرت گیاه بالایی گیاهان می‌باشد (Barati et al.، 2017; Oliveira et al.، 2017). بعلاوه حذف هیدروکسی ناشی از نفت به مسیله گیاه (Vetiveria zizanioides) به دلیل داشتن ژن‌های مقاومت در خاک‌های آلوده به نفت در
اهواز نیز مورد بررسی قرار گرفته است و نتایج مشخص کرده است که این تاکتیک بسیاری
بالایی در حذف هیدروگربینهای کل نفتی دارد (کرداچی و نکدنیا، 1394).

بسیاری از مناطق کشورمان به‌خصوص مناطق جنوبی از قطبهای مهم نفتی خارج‌المللی محسوب
می‌شوند. بنابراین چنین مناطقی این پتانسیل را دارند که هر سال حجم وسیعی از آلاینده‌های بالقوه
سمی و خطرناکی را به محیط‌زیست وارد کنند که منجر به تحمیل آثار سویی بر بیکردهای زیست‌بوم
می‌شود. از طرفی در چنین مناطقی استفاده از روش‌های کم هزینه و سازگار با محیط‌زیست در رفع
آلودگی‌ها کمتر برداشته شده است. لذا تحقیق حاضر با هدف بررسی تأثیر پروپاژ و کمپوست زباله
زئیکن و فازینهای خارجی فازینهای خارجی کل نفتی (TPH) کارگاه کنار توسط گونه کنار spina-christi
نجام شد.

مواد و روش

خاک مورد استفاده در کشت گلدانی، خاک آلوده به سلع نفتی می‌باشد که از منطقه چوب سرخ
روستایی از دهستان تل پراج مسجدسلیمان، واقع در ۱۵ کیلومتری و. و ۱۵۰۶ شمایی و ۱۳۳۲ به موجب
۴۲ شرکت به‌پردازی نفت و گاز مسجدسلیمان می‌باشد. خصوصیات فیزیکی و شیمیایی خاک
مورده استفاده در این تحقیق در جدول شماره ۱ آورده شده است. برای اعمال تیمارهای کمپوست زباله
شهربندی و پروپاژ کمپوست زباله شهربندی، کمپوست و پروپاژ در سه سطح صفر، ۱ و ۲ درصد به‌صورت
وزنی به خاک‌ها اضافه شدند. در جدول ۲ شناسایی تیمارهای کمپوست و پروپاژ استفاده شده در تحقق ارائه
شده است. همچنین در کار تیمار شاهد با گونه کنار (تیمارهای کمپوست و پروپاژ صفر درصد بود).

تیمار شاهد بدون گونه کنار (بدون گیاه) نیز بررسی شد.

برای انجام این تحقیق از نهالهای یکساله گونه کنار استفاده شد. نهالهای کنار در معرض
تیمارهای ذکر شده در بالا قرار گرفته و بعد از پایان دوره رشد گیاه (دوره ۶ ماه)، از خاک گلدان‌ها
نمونه‌برداری و فاکتورهای مورد نظر به‌عنوان تیمار نهاله تأثیر گیاه و تیمارهای اصلاح‌کننده بر روی
هیدروگربینهای کل نفتی و فازینهای نیکل و ونادیم بررسی شد. برای نمونه‌برداری همه یک
گلدان خارج شد و سپس از هر گلدان به‌صورت جداگانه نمونه‌ها برداشت شدند.
تهیه کمیوسنت زباله شهری و پیچار

نمونه‌های کمیوسنت زباله شهری از ایستگاه حلقه در انتهای سمت زیر داشت. نمونه‌های کمیوسنت زباله شهری در فاکتورهای حاصله آب و غبار، دستگاه کار، آب و گاز و ابعاد محیطی زباله‌رسانی، کمیوسنت و حلقه‌های ایستگاه حلقه، داشتند.

سپس به‌منظور استحکام شرایط کم‌ابعاد اکسیژن در داخل کوره و توجه به صورت نمونه‌گیری شدند. کردانه‌ای بر اساس میزان دمای نمونه‌ها در داخل کوره و بستابهای فراهم شد. مشخصات نمونه‌ها به دست آمده در هر شرایط برای انجام نتایج بروز ندارند.

شکل ۱. تهیه کمیوسنت

تیم‌بندی کل فازات سنگین نیکل و خانامی در نمونه‌های خاک

بعد از آنکه نمونه‌های خاک گلدان‌ها در دمای ۲۰۰ درجه سانتی‌گراد در آن‌ها خشک شده و از اکلیل متری عبور داده شدند، سپس در این‌جا کم‌ابعاد و با دمای ۲۰۰ درجه به‌دست آمد. نمونه‌های مختلف از nằmه شد و با دمای ۴۰ درجه به‌دست آمد. تغییرات بین‌مایوری قرار گرفت. سپس نمونه‌ها از کاغذ صاف و آبی شده در بالا ۴۰ درجه داده شدند.

سالم‌نما GBC Avanta ICP-OES ۲۳ ساعت شده است تا قرار بگیرد و استرشاد آماده شود.

اندازه‌گیری هیدروکربن‌های کل نفتی (TPH) در خاک

برای اندامگیری میزان هیدروکربن‌های کل نفتی در خاک از روش آراس حفاظت محیط‌زیست آمریکا استفاده کردیم. ابتدا خاک را درون هاوون کوبیده و یک گرم خاک خشک را وزن نموده، درون لوله‌ها درون‌دار سانتریفیوز ریخته، ۱ میلی‌لیتر محلول کلروفیروناستون (نسبت ۱:۱) اضافه نموده و لوله‌ها را به مدت ۴ دقیقه تکان داده و سپس آن‌ها را بهمراه ۵ دقیقه به دو دور در دقیقه سانتریفیوز نموده تا رسواده‌های گردند. پس از سانتریفیوز کردن یک میلی‌لیتر از مایع
روپی را برداشت و برای اندازه‌گیری میزان ترکیبات هیدروکربنی آن مورد استفاده قرار گرفت (Tehrani et al., 2006; Hutchinson et al., 2001). سپس به موادی دستگاه قرمانوگرافی گازی از نوع بونیلاسیون شعله‌ای مدل Agilent 7890A مقدار کل هیدروکربن‌ها اندازه‌گیری شد.

جدول ۱- برخی از مشخصات خاک اولیه گندم‌ها

<table>
<thead>
<tr>
<th>متغیرها</th>
<th>میزان اندازه‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>هیدروکربن‌های کل مطلق (mg/kg) (TPH)</td>
<td>۱۹/۷۶</td>
</tr>
<tr>
<td>اسیدتیته (pH)</td>
<td>۷/۵</td>
</tr>
<tr>
<td>قابلیت هدایت الکتریکی (dS/m) (EC)</td>
<td>۲/۴۳</td>
</tr>
<tr>
<td>کربن آلی (درصد)</td>
<td>۱/۷۸</td>
</tr>
<tr>
<td>نیترژن (N) (درصد)</td>
<td>۲/۴۳</td>
</tr>
<tr>
<td>پناسیم (K) (mg/kg)</td>
<td>۶</td>
</tr>
<tr>
<td>فسفر (P) (mg/kg)</td>
<td>۸</td>
</tr>
<tr>
<td>رس (درصد)</td>
<td>۲/۲</td>
</tr>
<tr>
<td>سنگ (درصد)</td>
<td>۳۰/۰</td>
</tr>
<tr>
<td>نیکل کل (mg/kg)</td>
<td>۹۰</td>
</tr>
<tr>
<td>وانادیوم کل (mg/kg)</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲- نتایج تجزیه کمیوسی زباله شهری و بیوفیل کمیوسی زباله شهری
تجزیه و تحلیل داده‌ها

<table>
<thead>
<tr>
<th>بیوجار کمپوست زباله شهری</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>کربن کل (%)</td>
<td>104/81</td>
</tr>
<tr>
<td>نیتروژن (%)</td>
<td>0/75</td>
</tr>
<tr>
<td>هیدروژن (%)</td>
<td>0/19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>کمپوست زباله شهری</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>فسفر (%)</td>
<td>0/35</td>
</tr>
<tr>
<td>پتاسیم (%)</td>
<td>0/33</td>
</tr>
<tr>
<td>وزن مخصوص ظاهری (dS/m)</td>
<td>2/01/4</td>
</tr>
<tr>
<td>pH (gr/cm3)</td>
<td>3/66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(dS/m)</th>
<th>9/5</th>
</tr>
</thead>
</table>

درصد رطوبت

(عصاره 1/10)

این آزمایش در سه تکرار برای هر تیمار و در قالب طرح کاملاً تصادفی انجام گرفت. کلیه داده‌های موجود با استفاده از آزمون‌های کلموگروف اسمیرنوف و لیون مورد بررسی همگنی قرار گرفتند. به منظور بررسی و تجزیه تحلیل آماری اطلاعات انداره‌گیری شده از آزمون تجزیه واریانس یک طرفه استفاده شد. در صورتی که بین واریانس‌ها تفاوت معنی‌داری وجود داشت از آزمون مقایسه‌های بین گروه‌ها استفاده شد. کلیه آنالیز‌ها در محیط نرم‌افزار SPSS نسخه 16 انجام گردید. نمونه‌های 16 آزمایشی نمودارها با استفاده از نرم‌افزار Excel نسخه 2013 رسم شدند.

نتایج

بررسی تأثیر کاربرد تیمارهای اصلاح کننده بر گیاه‌پایی فلز نیکل

نتایج نشان داد اثر تیمارهای اصلاح کننده (کمپوست زباله شهری و بیوجار) بر غلظت فلز نیکل خاک معنی‌دار بود (جدول 3). مقایسه میانگین‌ها نشان داد غلظت نیکل خاک در تیمار بیوجار یک درصد کمتر از سایر تیمارها می‌باشد، بیشترین مقدار نیکل خاک مربوط به تیمارهای شاهد با گونه

277
نتیجه حفاظت زیست بوم گیاهان دوره ششم، شهره دوزدهم، بهار و تابستان 1397

کار و شاهد بدن کار بود (شکل 1) با توجه به شکل 1، بیچاره یک درصد از سایر تیمارها مناسبتر می‌باشد و عنصر نیکل را بیشتر جذب کرده است.

شکل 1- مقایسه میانگین اثر تیمار‌های مورد بررسی بر روی فناوری نیکل خاک (حرف متفاوت شان دهنده وجود تفاوت معنی‌دار بین تیمارها می‌باشد)

جدول ۳- تجزیه‌وریایی اثر تیمار بر نیکل خاک

Sig.	میانگین سرمایه‌های مربوط	درجه آزادی	منبع
	پیچر	پیچر	نیکل خاک
	۲۹۵۰۵۴	۲۹۵۰۵۴	۲۹۵۰۵۴
	0.000	**0.000**	**0.000**

**: در سطح یک درصد معنی‌دار

۲۴۸
بررسی تأثیر کاربرد تیمرهای اصلاح کننده بر گیمبالایی فاز وانادیم

اثر تیمرهای اصلاح کننده کمپنست زیاله شری و بیچار بر غلتت وانادیم خاک معنی دار بود (جدول 4). مقایسه میانگین ها نشان داد غلتت وانادیم خاک در تیمر کمپنست یک درصد کمتر از سایر تیمارها می‌باشد. بیشترین مقدار وانادیم خاک مربوط به تیمار شاهد با گونه کنار و تیمار شاهد بدون گونه کنار بود (شکل 2). همانطور که در شکل 2 مشاهده می‌شود تیمار کمپنست یک درصد از همه مناسبتر می‌باشد و فاز وانادیم را بیشتر از سایر تیمارها جذب کرده است، البته قابل ذکر است بین کمپنست یک درصد و کمپنست دو درصد تفاوت معنی‌داری وجود ندارد.

شکل 2 - مقایسه میانگین اثر تیمارهای مورد بررسی بر روی غلتت وانادیم خاک (حرف متغیر نشان دهنده وجود تفاوت معنی دار بین تیمارها می‌باشد)
نشانه حفاظت زیست بوم گیاهان/ دوره ششم، شماره دوازدهم، بهار و تابستان ۱۳۹۷

جدول ۲- تجزیه و ریانش اثر تیمار بر وانادیم خاک

<table>
<thead>
<tr>
<th>متغیر</th>
<th>درجه ارزادی</th>
<th>سایگن مربوطات</th>
</tr>
</thead>
<tbody>
<tr>
<td>بین غوروها</td>
<td>۵</td>
<td>۵/۴/۱۴ **</td>
</tr>
<tr>
<td>وانادیم خاک داخل غوروها</td>
<td>۱۲</td>
<td>۱/۱/۳۹</td>
</tr>
<tr>
<td>کل</td>
<td>۱۷</td>
<td></td>
</tr>
</tbody>
</table>

**: در سطح یک درصد معنی‌دار

اثر تیمارها بر میزان هیدروکربن‌های نفتی خاک (TPH)

اثر تیمارها، اصلاح کننده (بیوجار و کمپوست) بر مقدار هیدروکربن‌های کل نفتی خاک در سطح یک درصد معنی‌دار بود (جدول ۲). نتایج حاصل از بررسی اثر تیمارها بر مقدار هیدروکربن‌های کل نفتی خاک نشان داد که بیشترین مقدار هیدروکربن‌های خاک مربوط به تیمار شاهد بدون روش کنار و کمترین مقدار هیدروکربن‌های خاک مربوط به تیمار کمپوست و دو درصد بود. همانطور که شکل ۳ نشان می‌دهد؛ بین تیمار‌های کمپوست یک و دو درصد تفاوت معنی‌داری وجود ندارد، همچنین بین تیمار‌های شاهد با گونه کنار و شاهد بدون گونه کنار تفاوت معنی‌داری وجود ندارد (شکل ۳).

۲۷۰
جدول ۵- تجزیه و تحلیل اثر تیمار بر هیدروکرین‌های کل نفتی خاک

<table>
<thead>
<tr>
<th>متغیر</th>
<th>درجه آزادی</th>
<th>میانگین مربعات</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>بین گروه‌ها</td>
<td>5</td>
<td>۳۳ /۹۷۱**</td>
<td>۰.۰۳</td>
</tr>
<tr>
<td>هیدروکرین‌های کل نفتی خاک</td>
<td>۱۲</td>
<td>۴ /۷۲۲</td>
<td></td>
</tr>
<tr>
<td>داخل گروه‌ها</td>
<td>۱۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کل</td>
<td>۱۷</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۲- مقایسه میانگین اثر تیمارهای مورد بررسی بر هیدروکرین‌های کل نفتی خاک
بحث و نتیجه‌گیری

در این تحقیق مشخص شد که اثر فاکتورهای اصلاح کننده (بپچار و کمپوسیت) بر مقدار هیدروکریز های کل نفتی خاک معنادار است و این تیمارها می‌توانند باعث افزایش جذب آلاندها شوند. زیرا این دو تیمار هیدروکریز های بالایی در خاک مربوط به تیمار شاهد و کمترین مقدار هیدروکریز های بالایی در خاک مربوط به تیمار کمپوسیت بک و دو درصد بود.

کنار به عنوان گونه مورد استفاده در این تحقیق با حضور بپچار و کمپوسیت باعث کاهش میزان هیدروکریز های کل نفتی خاک شد که همسر با نتایج دیگر محققین می‌باشد (Don et al., 2012). به طورکلی گونه‌های گیاهی با ترکیب آنتیکانه و انزیم و کروپیریدات‌های پیچیده در ناحیه ریشه گیاه که منبعی مناسب از کربن و انرژی را برای رشد و افزایش ناحیه ریشه فراهم می‌سازد باعث حذف مقدار زیادی از هیدروکرین های کل نفتی خاک می‌شوند (علی‌بخترابودن، 1393). همچنین گیاهان قادرند از طریق رهاسازی عناصر غذایی و ترشحات خود در خاک و انتقال اکسیژن به ناحیه ریشه خود موجب تحریک و افزایش فعالیت جمیت میکرویی تخریب کننده آلوده‌های نفتی شوند.

کمپوسیت با افزایش میزان مواد معذی خاک و تحریک ریزبندان باعث حاصلخیز شدن خاک می‌شود (Zhen et al., 2014). ریز جانداران از هیدروکرین‌ها به عنوان منبعی برای افزایش انرژی و کربن موردباز خود استفاده می‌کنند و هیدروکرین‌ها به آن و در اکسیسکره‌کرین تبدیل می‌شوند و نتیجه آن کاهش هیدروکرین‌های نفتی در خاک است (Rivera-Espinoza and Dendooven, 2004). در کاربرد ارگچه در این مطالعه به طور مستقیم ریزبندان مورد بررسی قرار گرفتند اما می‌تواند به عنوان عاملی برای کاهش هیدروکرین‌ها باشد. این یافته‌ها با مطالعات جهان‌پایه و همکاران، 1395 و فنگ و همکاران (Feng et al., 2014) هم‌خوانی دارد. از طرف دیگر کمپوسیت قدرت تغذیه‌گذاری، جذب و حرکت آب را در خاک افزایش می‌دهد. همچنین موجب اصلاح وضعیت غذایی و تهیه در خاک می‌شود که از این راه می‌توان اثرهای منفی هیدروکرین‌ها را کاهش دهد (Wiley, 2006).

می‌تواند که از این راه می‌توان اثرهای منفی هیدروکرین‌ها را کاهش دهد در تحقیق مشخص شد که بپچار نیز همانند کمپوسیت کاهش هیدروکریز‌های نفتی می‌شود که همسر با یافته‌های هاله و همکاران (2011)، است. زیرا بپچار دارای مقدار کردن بالا و درجه تخلخل نسبتاً زیاد می‌باشد که به عنوان یکی از عامل می‌کند و موجب کنترل آلوده‌ها

272
هسپی و بروجردی (2010)، همچنین بیوچار موجب افزایش بهبود خاک و بهبود دسترسی به مواد غذی و در نتیجه افزایش فعالیت میکروبی، بهبود بیماری خاک، خطر زیستی گریز، کاهش تغییرات Lehmann and Clemente and Bernal، 2006، آب و هوا، ازدیدگی نفوذ آب، حفظ رطوبت خاک و افزایش ظرفیت جذب موی (Joseph، 2009، 2010، 2011) بهبود اثرات بیوشبد جذب هیدروگیاری همیشگی نفتی از خاک مشاهده شد؛ که ناشی از خاصیت آرومانتیکی، گروه‌های عاملی سطحی و خلخ و فرآیندهای موجود در بیوچار است. زیرا گروه‌های عاملی همچون کریوکسبیل، فنولیک هیدروکسیلی که در اکسیژن سطحی می‌باشند بیوچار را قادر سازد تا آلاینده‌ها را کاهش دهد (Yu et al.، 2009).

علاوه بر ترکیبات نفتی، کمپوست زباله شهری و بیوچار موجب کاهش فشار سطحی در خاک شدن. زیرا مواد آلی همچون کمپوست با تشکیل کمبیسکس‌های پایدار با فشار سطحی در خاک و دارای بودن مواد موجب جذب و تنظیم فشار سطحی در خاک می‌شود (Clemente and Bernal، 2006)، این نتایج هم‌ساز با نتایج قانونی و خلاص‌نامه (1392) و کمی و همکاران (2011) باشد که بیان کردند که کمپوست موجب کاهش عاملی فشار سطحی در خاک می‌شود اما با نتایج استراحتی و همکاران در سال 1392 مطابقت نداشت است. زیرا این بیان کردند که کمپوست موجب افزایش فشار سطحی در خاک می‌شود. مکانیسم احتمالی برای تثبیت و کاهش فشار استر پایه بیوچار شامل تشکیل رسوبات سنگی، کربنات واکسید فلزات و همچنین اثرات متقابل الکترواستاتیک (Uchimiya et al.، 2010) بین کاتیون‌های فلز و گروه‌های عاملی شیمیایی فعال بهسیله pH خاک است. pH افزایش pH موجب کاهش تحرک و پویایی فلزات سنگی می‌شود و از این طریق ظرفیت جذب خاک را برای جذب بیشتر فلزات سنگی افزایش می‌دهد. البته رفتار pH جایگاه‌های جذب فلز‌ها زیاد خاک می‌شود که این صورت مقدار فلز‌ها در خاک کاهش می‌دهد همچنین بیوچار در مدل‌های سه‌بعدی کمبیسکس کنند و از این راه تحمل فشار تا در خاک کاهش دیده. در نتیجه فشار در خاک کاهش می‌پایه (حماری زاده و همکاران، 2013)، از طرف دیگر بیوچار به‌دلیل دارا بودن سطح ورژه برای ظرفیت نیابت کاتیونی زیاد موجب کاهش آلاینده‌های خاک می‌شود (Beesley et al.، 2010). نتایج این مطالعه هم‌ساز با نتایج هاله و همکاران (2013) می‌باشد که بیان کردند بیوچار موجب کاهش فشار سنگین در خاک می‌شود. همچنین خاک و همکاران در سال 1386 بیان کردند به‌کارگیری تیمارهای بیوچار و کمپوست در خاک آلوده به فلزات سنگین موجب کاهش آلاینده‌ها می‌شود.
نتیجه‌گیری کلی

کمبوست دو درصد بیش‌تر را در کاهش هیدروکربن‌های نفتی خاک دارد. همچنین اثر نیماره‌ای اصلاح کننده (کمبوست زباله شهری و بی‌چار) باعث اثرات مثبت و معنی‌داری بر کاهش غلظت فلزات نیکل و وانادیم خاک بارند. کمبوست و بی‌چار با فراهم نمودن شرایط بهینه رشد برای گیاه، به جذب آلاینده‌ها توسط گیاه و در نهایت به ارتقاء فرآیند گیاه‌پالایی کمک کردن. با توجه به نوع گونه‌های گیاهی در ایران، پژوهشگران متفاوت، بر اساس از گیاه پالایی در کنار اصلاح کننده‌های مانند بی‌چار و کمبوست می‌تواند به عنوان یک راهکار مؤثر و کاربردی در زیست‌پالایی خاک‌های آلوده مطرح شود.

منابع

جهانتاب، ا. جعفری، م. متشرعزاده، ب. طولی، ع. ضرغام، ن. 1395. ارزیابی پتانسیل گیاه‌پالایی گونه‌های گیاهی مرتبت در خاک‌های آلوده به ترکیبات نفتی با تأکید بر فلز سنگین نیکل. فصلنامه علوم محیطی. 16 (3): 370-376.

جهانتاب، ا. جعفری، م. متشرعزاده، ب. طولی، ع. ضرغام، ن. 1395. ارزیابی گونه‌های گیاهی مقاوم به فلزات سنگین در منطقه نفت‌خیز (مطالعه موردی: پارتن گچساران). نشریه علمی پژوهشی مرجع. 1364-1369.

حجازی، خ، غلامعلی، افسانه، ا، قربانی، م. 1395. تأثیر بی‌چار بر جذب سرب و کادمیم لجن فاضلاب کارخانه‌های کاذب توسعه آفتایگان (Helianthus Annuus L.). نشریه دانش آب و خاک. 1364-1369.

(2)

روستگاری، ا. جعفری، ا. ح. فرزادکیا، م. کلاتری، رر. العباید، ا. قلیزاده، ع. 1392. بررسی تأثیر کمبوست موارد زباله شهری بر میران نشت و جذب فلزات سنگین از خاک شیء رسی لوم، مجله دانشگاه علوم پزشکی سبزوار. 1392-1393.

رضایتی کهنسری، ا. فتوحی، ا. قربانی، ر. 1390. بررسی برخی صفات رشدی و فیزیولوژیک گیاه آکاسیا در خاک آلوده به پساب نفتی. اولین همایش ملی گیاه‌پالایی. 27 بهمن ماه 1390، کرمان، ایران.
دانلود از پگ.گونباد.ا.ر.کامنتیولیکی بدن و نهال
گونه‌های کنار، کهور، اکاسیا و افتاقیا. مجله بوم‌شناسی کاربردی، 13(6): 31-41.
کردا، ا. م. تک‌دان، ا. 1394. حذف کل هیدروکربن‌های نفتی با استفاده از گیاه و کنار و تغییرات
جمعیت میکروبی در خاک‌های آلوده به نفت در منطقه اهواز. مجله دانشگاه علوم پزشکی مازندران،
13(12): 37-87.
کرمی، م. رضایی‌نژاد، ی. افروینی، م. شریعتمداری، ح. 1386. اثرات تجمیع و باقی‌مانده لجن فاضلاب
شهری بر غلظت عناصر سرب و کادمیوم در خاک و گندم. مجله آب و خاک (مجله علوم و فنون

