نویسنده: هزه سلیمانی زاده

محتویات بیشتر در پیانه‌های خرید و مصداقی پور و مصداقی گلیبی،

به این اساس، خرید انبوهی و هندی متعلق به خریدارانه قیمتی مهم می‌باشد. خرید انبوهی گیاهی با پیستم

رشته‌ای عمیق، مقوله به خشکی و گرما بوده و خرید هندی یک گیاه امیدبخش پرای گیاه‌پارسی فاز می‌یابد. برعین اساس

توان جدی، تحمل و بایلی سرب توسط این دو گونه رشد یافته در حاکم ده‌ها متر مربع قرار داشت. گیاهان در هم‌های

در خاک‌های اندوهی شده با قفل‌های 30 و 40 میلی‌متر بیکه کلیسی سرب رشد یافته و پس از ۶ هفته، جهت

سنگش برخی پرای وارداتی از جمله طول، وزن خشک، سطح برق و پژوهش فتوسنتزی و قفل‌سرب برداشت شدند.

هر دو گونه شناختی تحمل نشانی که نسبت به سرب نشان دادن. همچنین تیمارهای سرب نسبت به طول، وزن خشک ریشه

و بخش هوایی و سطح برق ویژه هریک از دو گیاه بخش اثر مالی هریک داشتند. گرچه مرکزی‌های فتوسنتزی در گیاه

خرید انبوهی تحت تأثیر تیمارهای سرب قرار گرفتند، میزان کاهش‌ها و کارگردانی‌ها در خرید هندی تحت تیمار

۶۰ میلی‌متر بیکه کلیسی سرب کاهش یافته. با افزایش مقدار اکسیدی سرب در هاک، قفل‌سرب ریشه مرد و گیاه به‌طور

معنی‌داری وارد شد. با افزایش فتوسنتزی بیکه که نسبت بیکه سرب ریشه به خاک (فناک تولیده زیستی) زیاد. جهت سرب بخش

هوایی در خرید انبوهی تحت تیمار ۶۰ میلی‌متر بیکه کلیسی به‌صورت معنی‌داری، در کاهش و تیمار ۶۰ سرب این میزان ۷ و ۳۰ میلی‌متر بیکه کلیسی بوده، حاکم در سه تیمار تأثیر معنی‌داری نداشت. فاکتور

انتقال سرب به بخش هوایی در هر دو گیاه کم بود. با افزایش سرب در گیاه، خرید انبوهی و هندی نسبت به زیست توده.

نویسنده مسئول: ah_ab99@yahoo.com

39
شاخص تحمل تنشی، فلت سرب رنگ ریزی و در توجه تأثیر نقلlef زینت بالا، می توانند جهت تثبیت سرب خاک‌های آلوده و پاکسازی این خاک‌ها در مناطق شهری و صنعتی مفيد باشند.

واژه‌هاي کلیدي: آلوگی خاک، زینت پلاستیک، سرب شیمیاب، تحمل مقداره

امروزه یکی از چالش‌های اساسی در زمینه مهیضیت‌بستن، افزایش تدریجی فلت سرگی خاک‌های نسبت بیشتری یافته، تهدیدی برای سلامتی گیاهان و جانورانی است که در سطوح مختلف چرخه غذایی حضور دارد (تولکی محمدی و همکاران، 1390، سازمان انرژی ملی (Saha و Hossain، 2011). افزایش میزان به شدت فلت‌های معمولی، تاثیرات این مسئله از قبیل استخراج معدن، تصفیه فلت‌ها، برخورداری از اکروز، تولید کننده و سوخت، Kaban-Pendias و Pendias، 2001] نشان می‌دهند که با ورود به روند رو به رشد جمعیت دنیا از سویی و افزایش تدریجی میزان آلوگی خاک‌های مهیضیت‌بست و به‌دنبال آن نابودی خصوصی از خاک‌های کشاورزی، جالس‌های باستانی و جدایی دنیا در دهه ایند به سر می‌برد.

سر سرب معمولاً در صنعت آلوگی کننده مهیضیت‌بست در میان (Watanabe، 1997 و (Watanabe، 1997 و به‌دست اولین و پراکنش گسترده در جوامع شهری و صنعتی به‌وجود در مناطق دفن زباله‌ها، کنار جاده‌ها و بزرگراه‌ها و حطر بالقوه آن برای مهیضیت‌بست، سلامت انسان‌ها و حیوانات، منشأ نگرانی‌های متعددی گردیده است (Lone et al., 2008). اکثریت نگرانی‌های مربوط به این موضوع در کشورهای غربی از (Asadi Kapouchral et al., 2009) با توجه به دستگاه‌های جدید و افزایش کیفیت نیاز به حل مسئله توانسته‌اند. این امرات معمولاً سرب در ن خوردن از آن‌ها است. اکثریت سرب در زندگی انسان می‌توان تاثیرات آن خودرا به‌کلیه سطح جنین و نارسی نزاد، اختلال سیستم عصبی، آسیب به رنگ، نابودی مردان، کاهش...

نتیجه‌های اصلی سرب در کنار ممکن است که این کمیت از نظر منافع محیطی، همجوش خاک‌های است که اعمال پیوسته و به‌کلیه تحقیق نشان دهنده است، اما در صورت وجود فرم‌های محلول در محیط، رشته گیاه قادر خواهد بود (Yang et al., 2004). مقدار زیادی از آن را جذب کند (Kabata-Pendias and Pendias، 2000). افزایش غلتان افزایش یافته و آنها را آلوگی می‌کند (Hamid et al., 2010).
زهره سلیمان‌نژاد و همکاران

در خاک می‌تواند سبب مسمومیت گیاه، زردی برگ‌های جوان، کاهش جذب برخی عناصر ضروری، کاهش فتوسنتز و فعالیت‌های داخل سلول می‌گردد (Larbi et al., 2003). گیکی از دلالی سمیت سرب به‌عنوان ساختار بینی کلیسیم با سرب بوده و به‌همین علت بیشتر سرب بسیاری از بیماری‌های رفتاری کلیسیم را تقلیل گردیده و در نتیجه سرب بسیاری از آنزیم‌ها مجدوی‌تر می‌کند. در گیاهان آثار مسمومیت سرب معمولاً در غلظت‌های بالاتر از ۳۰ میکروگرم بر گرم در بر گرظ ظاهر شده و به‌کاره شن‌گرد کلورفل و کاهش رشد روانی می‌شود (Ruley et al., 2004).

مطالعات نشان داده است که گیاهان در برقرار آلودگی ناشی از سرب واکنش‌های منتفاوی از خود نشان می‌دهند. برخی از گونه‌های گیاهی حساسیت بوده و عده‌ای دیگر مقادیر زیادی از این فلز سیگن را جذب و تحمیل می‌نمایند (Oliver and Naidu, 2003). تحمیل به فلز در گیاهان به‌صورت توانایی رشد ماندن در خاک که برای گیاهان دیگر سامانه تعمیر شده و در وسیع‌ترین برخی کمک به‌یک تاثیر می‌پذیرد. گیاهان متحمل می‌شوند به علت افزایش قدرت‌های مغذی و تولید مواد گیاهی فیتوتکسیک می‌باشند که می‌تواند موجب افزایش گیاهی می‌گردد. فن آوری گیاه‌پالایی می‌تواند به‌صورت مناسب گیاهی بروی محدود کردن این اندماه و با به‌عنوان استخراج و تبیخ گیاهی در حذف آلودگی‌ها مورد استفاده قرار گیرد (Thangavel and Subhuram, 2004).

خردل هندی گیاهی از تیره شیبو است که دارای رشد سریع بوده و حیات در خاکهای آلوده به فلزات سنگین قابلیت تولید زیستی نهایی را دارا می‌باشد. تاکنون مطالعات زیادی در مورد اثرات فلزات سنگین از جمله: کالسیوم و آرسنیک (Qadir et al., 2004; Anjum et al., 2008; Liu et al., 2008) در این گیاه انجام شده است. همچنین لیمو و همکاران (Gupta et al., 2000) اشاره نمودند که خردل هندی می‌تواند سطوح بالایی از سرب و دیگر فلزات سنگین را نجات دهد. خردل اینوپی رز گیاهی علفی‌کننده از تیره شیبو با سپرده رشدی عملی، مقاوم به شیمی و گرما می‌باشد. کورنیس و همکاران (Quartacci et al., 2007) نشان داده که خردل اینوپی در بین نه کورنیسم، مورد بررسی بالاترین مقادیر فلزات (آرسنیک، کادمیوم، مس، سرب و روی) را به‌دست آمده عمده‌ترین بخش‌های این گیاه می‌باشد.

با توجه به اینکه کیفیت زیست‌های گیاهی اثر‌شناسی با استفاده خواصی و غیرخواصی برای تولید بیودریل می‌باشد و با شرایط متساواج در نظر خواهد گرفته شیء، آب و هوای نیمه‌خشک و دمای هوای براساس بوده و در شرایط نامطلوب محیطی دارای عملکرد زراعی بهترین نسبت به

Brassica
تشریح و تحلیل

مواد و روش‌ها

شرایط کاشت: بذر دو گونه خردل اینوئی و هنگام از مرکز تحقیقات دانه‌های روغنی استان مازندران تهیه شد. بذرها ضدعفونی شده بس از سه روز جوانی در پنل رشد در اول و فروردین ماه سال 1394 به گلدن‌های باقی‌مانده به طور متوسط در هر گلدان (عدد در هر گلدان) منتقل و در گلخانه‌ای با پوشش سقف و دیواره‌ای پلاستیکی برای جلوگیری از قناد باران و با دو طرف فضای آزاد جهت جریان هوا کافی، کشت شدند. جهت آماده‌سازی خاک، ابتدا به میزان 100 کیلوگرم خاک زراعی و غیرالوده اطلاع شیرسپانی نکا گیم آری گردید (مقدار استاندارد آلودگی سرب در خاک‌های کشاورزی از pH 50 و در pH بیشتر از 7-25 میلی گرم بر کیلوگرم می‌باشد). برای ایجاد آلودگی سرب در خاک بطور مصنوعی از غلت‌های 300 و 600 میلی گرم در کیلوگرم سرب بهصورت نمک کلرید سرب استفاده شد. نمک هر گلدان بطور مجزا در 100 میلی لتر آب مغطر حل و بهصورت لاکی به‌طور نهایی به سطح خاک اسری شده و خاک هر گلدان جدایی و به‌طور پک‌نواخت مخلوط شد. خاک‌های آلوده دو بار تا حدی شد. میلی لتر آب آبیاری شده و جهت تغذیه و تغذیه اجرای خاک و فلز سرب و هم‌سانی شرایط آلودگی مصنوعی با شرایط آلودگی طبیعی به‌طور داده شد. شرایط هوا آزاد قرار داده شد (2012). خوشاخص‌های فیزیکی و شیمیایی خاک براساس روش‌های استاندارد آزمایش‌گاهی تعیین گردید (جدول 1). برای تعیین بافت خاک از روش استاندارد (1986، Thomas، 1996) در عصاره اشباع توسط pH متر (1996) تیتراسیون (1992؛ Nelson، Bremer) و pH (1996) بر روی کل خاک به روش کلیدال (Kuo، 1996)، فسفر قابل جذب به روش اولسن (1996)، پناسیم قابل جذب به روش اسنات آمونیوم (1397) می‌باشد (Cardone et al., 2003).
هرچه سلیمانزه و همکاران

نرمال در عصاره اشیاع (1996) و غلطت سرب پس از هضم اسیدی با استفاده GBC-932 AA اندازه‌گیری شد.

در طول دوره آزمایش اغلب روزها افتتاحی بوده و میانگین حداکثر و حداقل دمای روز و شب در گلخانه بطرف 29 و 18 درجه سانتی‌گراد و میانگین رطوبت نسبی 81٪ بود. آب‌های گلداها به‌صورت یک روز در ماه و به‌میزان 300 میلی‌لیتر در طول دوره رشد، با آب شهري انجام شده و گیاهان پس از 7 هفته (در آغاز فاز زایش) جهت تست ویتامین‌های رشدی برداشت شدند.

جدول 1- مشخصات فیزیکی و شیمیایی خاک مورد استفاده در این پژوهش

<table>
<thead>
<tr>
<th>متغیر</th>
<th>واحد</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>N%</td>
<td>رسمی</td>
<td>0/12</td>
</tr>
<tr>
<td>P (mg Kg⁻¹)</td>
<td>رس (٪)</td>
<td>47</td>
</tr>
<tr>
<td>K (mg Kg⁻¹)</td>
<td>سبیت (٪)</td>
<td>39</td>
</tr>
<tr>
<td>Fe (mg Kg⁻¹)</td>
<td>ماهیت (٪)</td>
<td>14</td>
</tr>
<tr>
<td>Zn (mg Kg⁻¹)</td>
<td>pH</td>
<td>7/52</td>
</tr>
<tr>
<td>Cu (mg Kg⁻¹)</td>
<td>EC (dS/m)</td>
<td>1/11</td>
</tr>
<tr>
<td>Mn (mg Kg⁻¹)</td>
<td>TNV%</td>
<td>1/72</td>
</tr>
<tr>
<td>Pb (mg Kg⁻¹)</td>
<td>OC%</td>
<td>1/32</td>
</tr>
</tbody>
</table>

اندازه‌گیری صفات رشد: پس از برداشت، ابتدا ریشه گیاهان با آب شسته شده و سپس آب سطحی ریشه‌ها با دستمال کاغذی غرفته شد. بعد از آن ریشه از بخش هواپیما جدا گردید و طول و وزن آن‌ها اندازه‌گیری شد. جهت اندازه‌گیری وزن خشک، نمونه‌ها به‌مدت 72 ساعت در دمای 75 درجه سانتی‌گراد در آون ترافیر مکنند و مجدداً توزیع شدند.

به‌منظور تعيين شاخ صخی بیک و وزن، از هر گیاه سه بیک (از قسمت‌های مختلف پایین، میانه و بالا) جدا شده و پس از اندازه‌گیری وزن، نمونه‌ها به‌مدت 48 ساعت در آون در دمای 75 درجه سانتی‌گراد خشک و توزیع شدند. جهت اندازه‌گیری سطح بیک از نمای‌های ImageJ سپس سطح بیک و وزه (SLA) بر حسب سانتی‌متر مربع بر گرم نمونه‌گیری شد. (Arias, 2007)

$$\text{SLA} = \frac{\text{سطح یک بیک}}{\text{وزن بیک}}$$

راه‌بط 1
نتیجه هفطانه زیست یوم گیاهان/ دوره ششم، شماره دوازدهم، بهار و تابستان ۱۳۹۷

\[\text{ش. تحمل} = \left(\frac{\text{وزن خشک محیط}}{\text{وزن خشک مادر}} \right) \times 100 \]

\[\text{ش. نش} = \left(\frac{\text{وزن خشک محیط}}{\text{وزن خشک مادر}} \right) \]

رابطه ۱

سابقه غلطی سرب برای استخراج سرب میزان ۱۰ گرم از وزن خشک بخش هوابی و ریشه گیاهان به‌منظور حذف ترکیبات آلی به مدت ۸ ساعت در داخل کوره در دمای ۵۳ درجه سانتی‌گراد GBC Avanta سوزانده شد و غلطی سرب بعد از هضم اسیدی با استفاده از دستگاه جذب انمی مدل ۱.۳۳ اندادگرین شد.

بی‌منظور ارزیابی پتانسیل استخراج گیاهان، فاکتور تغییری (BCF) (بخش هوابی و ریشه گیاه با استفاده از فرمول ۴ محاسبه گردید که C نشان دهنده غلطی سرب می‌باشد (Bini et al., 1995).

\[\text{BCF} = \left(\frac{\text{وزن کل محیط}}{\text{وزن کل مادر}} \right) \times 100 \]

رابطه ۲

جهت ارزیابی توانایی گیاه در انتقال سرب از ریشه به بخش هوابی، فاکتور انتقال (TF) (سرپ طبق طبق فرمول ۵) محاسبه گردید.

\[\text{TF} = \left(\frac{\text{وزن کل محیط}}{\text{وزن کل مادر}} \right) \times 100 \]

\[\text{EN} = \frac{\text{وزن کل محیط}}{\text{وزن کل مادر}} \times 100 \]

رابطه ۳

اندازه‌گیری میزان کلروفیل و کاروتئنید: برای سنجش میزان کلروفیل و کاروتئنید از روش آرون (Arnon, 1949) استفاده شد. ابتدا مقدار ۲۰۰ گرم از بافت تر کیا به ۲ میلی لیتر استون ۸۰/۰ سانتی‌گراد شد و سپس مخلوط به‌دست آمده به مدت ۱۰ دقیقه در دورگاه ۱۲۰۰ سانتی‌فوریوز گردید و از فاز فوقانی جهت سنجش کلروفیل و کاروتئنید استفاده شد.

نتیجه‌گیری: این آزمایش باعودت فاکتوریل در قالب طرح کاملاً تصادفی در سه نتیجه انجام شد (هر گلدان به عنوان یک تکرار می‌باشد). فاکتور اول سلسله سرب و فاکتور دوم پرامترهای موردنظر در

۴۴
گونه‌های مورد مطالعه بود. محاسبات آماری با استفاده از نرم‌افزار SAS و مقایسه میانگین‌ها با آزمون دانکن در سطح پنج درصد صورت گرفت.

نتایج

ارزیابی صفات رشد: نتایج آنالیز واریانس نشان داد که به‌جز اثر گونه در طول ریشه و وزن خشک بخش هوایی، اثر سرب، گونه و اثر منفی سرب یک گونه در هیچ یک از صفات رشد معنی‌دار نبود (جدول ۲). نتایج مقایسه میانگین‌ها نشان داد که نیماره‌های سرب اثر معنی‌داری در هیچ یک از صفات رشد مورد بررسی گیاه خردل اتیوپی و خردل هندی در مقایسه با شاهد نداشت (جدول ۳).
جدول ۲: نتایج تجزیه اثر سرب و غونه بر چربی و وزن خشک نهال، بازاره و دال فینال و جه میانی

<table>
<thead>
<tr>
<th>منابع</th>
<th>درجه</th>
<th>تغییرات</th>
<th>قرارداد</th>
<th>دلفینال</th>
<th>جه میانی</th>
<th>بازاره</th>
<th>نهال</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرب</td>
<td>۲</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>غونه</td>
<td>۱</td>
<td>۳</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳: مقایسه میانگین بر چربی صفات رشد در دو گیاه B. junceae و B. carinata

<table>
<thead>
<tr>
<th>صفات رشد</th>
<th>B. junceae</th>
<th>B. carinata</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول ریشه (cm)</td>
<td>(mg kg⁻¹)</td>
<td>(mg kg⁻¹)</td>
</tr>
<tr>
<td>طول خشک (cm)</td>
<td>(g Plant⁻¹)</td>
<td>(g Plant⁻¹)</td>
</tr>
<tr>
<td>وزن خشک (g Plant⁻¹)</td>
<td>(mg g⁻¹)</td>
<td>(mg g⁻¹)</td>
</tr>
<tr>
<td>وزن خشک (mg g⁻¹)</td>
<td>(mg g⁻¹)</td>
<td>(mg g⁻¹)</td>
</tr>
<tr>
<td>سطح برگ و وزن خشک (mg g⁻¹)</td>
<td>(mg g⁻¹)</td>
<td>(mg g⁻¹)</td>
</tr>
<tr>
<td>سطح برگ و وزن خشک (mg g⁻¹)</td>
<td>(mg g⁻¹)</td>
<td>(mg g⁻¹)</td>
</tr>
<tr>
<td>سطح برگ و وزن خشک (mg g⁻¹)</td>
<td>(mg g⁻¹)</td>
<td>(mg g⁻¹)</td>
</tr>
<tr>
<td>سطح برگ و وزن خشک (mg g⁻¹)</td>
<td>(mg g⁻¹)</td>
<td>(mg g⁻¹)</td>
</tr>
</tbody>
</table>

شایع: B. junceae و B. carinata های دو گیاه در حال حاضر در سطح 5/0% غیر معنی‌دار بوده‌اند.

توضیحات: * به ترتیب نشان دهنده معنی‌دار بودن در سطح 1/0% و غیر معنی‌دار بودن می‌باشد.

تدویی: میانگین به روش چهار طیف مشترک باشد در سطح 5/0% اختلاف معنی‌داری ندارد.
ارزیابی برداری گیاهان به نش سرب، نتایج آنالیز واریانس نشان داد که اثر سرب، گونه و اثر متقابل سرب × گونه در شاخص تحمل نش معنی‌دار نبود (جدول ۴). نتایج مقایسه میانگین‌ها نیز نشان داد که هر دو گیاه خردل اتیوپی و خردل هندی را نسبت به سرب نشان دادند (شکل ۱).

نتایج آنالیز واریانس نشان داد که اثر سرب، گونه و اثر متقابل سرب × گونه در شاخص تحمل معنی‌دار نبود (جدول ۴). همچنین تیمارهای سرب اثر معنی‌داری در هر دو گیاه خردل اتیوپی و خردل هندی در مقایسه با شاهد نداشت (شکل ۱).

اثر سرب در میزان رنگی‌های فتوستنزی: نتایج آنالیز واریانس نشان داد که اثر سرب و گونه در کلروفیل a، کلروفیل b، کلروفیل كل و کاروتئنیئد معنی‌دار بود، ولی اثر متقابل سرب × گونه در هیچ یک از رنگی‌های فتوستنزی دو گیاه معنی‌دار نبود (جدول ۳). سطح مختلف الودگی سرب اثر معنی‌داری بر میزان رنگی‌های فتوستنزی گیاه خردل اتیوپی در مقایسه با شاهد کاهش نداشت، ولی در گیاه خردل هندی در مقایسه با شاهد، تیمار ۶۰۰ میلی‌گرم در کیلوگرم سرب منجر به کاهش معنی‌دار میزان کلروفیل a، کلروفیل b و کاروتئنیئد کل گردن و همچنین کاهش میزان کاروتئنیئد تحت تیمارهای ۶۰۰ و ۴۰۰ میلی‌گرم در کیلوگرم سرب مشاهده شد (جدول ۵).

![نمودار](https://via.placeholder.com/150)

شکل ۱: اثر فلسطینه سرب در شاخص تحمل نش (الف) و شاخص تحمل (ب) در گونه B. carinata و B. juncea

شکل ۲: اثر فلسطینه سرب در شاخص تحمل نش (الف) و شاخص تحمل (ب) در گونه B. carinata و B. juncea

برای پاسخ‌های مربوط به سوالات مربوط به میزان رنگی‌های فتوستنزی، جدول ۴ و نمودار ۱ استفاده کنید.
جدول ۴- نتایج تجزیه واریانس اثر سرب، گونه و اثر متقابل سرب × گونه بر شاخص تحمیل زیرکوکسیدی

<table>
<thead>
<tr>
<th>سرب</th>
<th>گونه</th>
<th>شاخص تحمیل زیرکوکسیدی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲</td>
<td>۱</td>
<td>۰.۱۵۲ * ۱۰⁻۳</td>
</tr>
<tr>
<td>۴</td>
<td>۳</td>
<td>۰.۱۵۲ * ۱۰⁻۳</td>
</tr>
<tr>
<td>۶</td>
<td>۶</td>
<td>۰.۱۵۲ * ۱۰⁻۳</td>
</tr>
</tbody>
</table>

شایع: درجه ناپایداری آزادی ۱۰، گونه: ۱۰، سرب: ۸، تغییرات: ۱۳۴۷

جدول ۵- مقایسه میانگین رگی‌های فتوسنتزی (میلی گرم بر گرم وزن توده) در گیاه خردل انبوهی و خردل هندی رشد

<table>
<thead>
<tr>
<th>گیاه</th>
<th>غلظت سرب در (mg kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. carinata</td>
<td>۰.۰۵۰ ± ۰.۰۲۴</td>
</tr>
<tr>
<td>B. junceae</td>
<td>۰.۰۳۰ ± ۰.۰۱۶</td>
</tr>
</tbody>
</table>

منابع: گلدایه استاندارد با ۳ تکرار، میانگین‌های هر ستون که حداکثر یک حرف مشترک باشند در سطح ۰/۵% اختلاف معنی‌داری ندارند.

پیشنهاد: سرب در گیاهان: نتایج آنالیز واریانس نشان داد که اثر سرب بر تمام پارامترهای مرتبط با غلظت و اثر متقابل سرب × گونه در فاکتور تغییر ثابت ریشه و فاکتور انتقال معنی‌دار نبوده و همچنین اثر گونه بر هیچ یک از پارامترهای مرتبط با غلظت معنی‌دار نبود. با افزایش غلظت آلودگی سرب در حاکی، غلظت سرب و فاکتور تغییر زیستی در ریشه هر دو گیاه افزایش یافت. بطوری که در آلودگی بالای سرب در مقایسه با نیمار ۳۰۰ میلی گرم در کیلوگرم، غلظت سرب ریشه
بهترین در خریدل ایتیوی و هندی بهمیزان ۲/۶ و ۴ برای افزایش گفت، افزایش نسبی سرب در خاک اثر معنی‌داری در میزان سرب خش‌هواوی خریدل ایتیوی (بهجزه تیمار ۶ میلی‌گرم در کیلوگرم سرب) و خرید هندی در

جدول ۶- نتایج تجزیه واریانس دوطرفه اثر سرب، گونه و اثر انتقال سرب × گونه بر غلظت سرب، فاکتور تنظیم زیستی و

<table>
<thead>
<tr>
<th>فاکتور انتقال</th>
<th>غلظت سرب رشته</th>
<th>تغییرات آزادی</th>
<th>خطا</th>
<th>کل</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرب</td>
<td></td>
<td></td>
<td></td>
<td>۴۳</td>
</tr>
<tr>
<td>گونه</td>
<td></td>
<td></td>
<td></td>
<td>۱۷</td>
</tr>
<tr>
<td>سرب × گونه</td>
<td></td>
<td></td>
<td></td>
<td>۱۷</td>
</tr>
</tbody>
</table>

شکل ۲- اثر غلظت‌های مختلف سرب خاک در غلظت سرب رشته (ب)، خش‌هواوی (ب)، فاکتور تنظیم زیستی رشته (ج) و خش‌هواوی (ب) و فاکتور انتقال (ب) در گیاه B. junceae و B. carinata میلی‌ها نشان دهنده خطای استاندارد می‌باشد. در هر نمودار، میانگین‌هایی که حداکثر دارای یک حر夫 مشترک باشند در سطح ۵% اختلاف معنی‌داری ندارند.
نتایج این مطالعه نشان می‌دهد که تیمارهای سرب اثر معنی‌داری در هیچیک از صفات رشد مورد بررسی گیاه خردل انوی و هندی نداشت. اسکیپ گیاهان و همکاران (9)

2009 نیز نشان دادند که تحت غلظت 1000 میلی گرم بر کیلوگرم سرب در خاک، هیچ گونه علامت مشاهده نشد. همچنین در این مطالعه فقط 0/27/3% از کل سرب خاک در دسترس گیاه بوده است و این اشاره به این است که برخی گیاه ترجمه بهترین بحث و نتیجه‌گیری

Begonia et al., 1998(3) اشاره نمودند که pH بالاتر از 7/15 حلالیت سرب را کاهش می‌دهد، لذا احتمال دارد در تحقیق حاضر به مقدار 0/36 میلی گرم بر کیلوگرم در گیاهان مورد مطالعه حاضر تأثیرگذار مشابه ترجیح بوده است. در نتایج مشابه، بگونیا و همکاران (1998) این مطالعه در نظر گرفته شد که با توجه به اینکه با اینکه در خردل هندی که باعث کاهش گیاه مدل در روش گیاه‌پایی مطرح است، در حضور غلظت‌های مختلف سرب (1000-0 میلی گرم در لیتر) نتایج معنی‌داری در سطح خاک برای وزن یک و خشکی ریشه و ساقه نسبت به شاهد مشاهده نشد. در چنین پژوهش افزایش توده وزنی گیاه با استفاده از غلظت کم

براساس مقدار پایینی شاخه تحمل می‌باشد. چنین مکانیسم برای مقابله گیاهان به بروز فلزی

سمر ارثی یک بیش از این مکانیسم‌ها شامل اتصال به دیواره‌های سلولی. کاهش ارثی از عرض

غشای بالاخماهی، انتشار به اپپیلاست، تشکیل کمیکس در سیتروپلاست و انتقال و تجمع در واکول

می‌باشد(Hall, 2002; Rengel, 1997(2). بنظر می‌رسد که سازگاری خردل هندی نسبت به افواش

۱۳۹۷ تشریح حفاظت زیست و کارهای گیاهان/ دوره ششم، شماره دوازدهم، بهار و تابستان

۱۰۵
میخایل فلزات سنگین با توسعه مکانیسم‌های ذخیره‌سازی واکولوئی کارآمد بود (John et al., 2009). سطوح مختلف اولوگی سرب اثر معنی‌داری بر میزان رنگ‌زهای فتوسنتزی گیاه خردل ایبیوی نداشتند. عدم کاهش میزان گلوکولیز در فتوسنسنی متغیر نظری به‌بیننی فاز سنگین در واکولوئی آن، نسبت غای در مقابل نشتن فلات نسبت داد. تیمار چهار میلی‌گرم در گیاه کلوگولیز نسبت به کاهش رنگ‌زهای فتوسنتزی در گیاه خردل هندی گردد. جون و همکاران نشان دادند که فلزات های سرب و سرب میکرو‌و سرب بی‌سرب در مراتب 400 روز نیاز دهی، میزان گلوکولیز a، b، c کلوگولیز b و c کلوگولیز و کلوگولیز هندی را در بالا گلدای آفریقی داده، اما با تداوم شرایط نشنه و گذشت زمان، میزان این رنگ‌زهای کاهش یافت. کاهش میزان رنگ‌زهای فتوسنتزی گیاهان تحت تیمار سرب می‌تواند بهمراه با افزایش دقت عضوی میزان فتوسنتز کلوگولیز و رنگ‌زهای دیگر باشد. تجربه زیستی کلوگولیز نیز در حضور فلات سنگین از عوامل مهم کاهش کلوگولیز محسوب می‌شود (John et al., 2001). توقف فعالیت آنزیم کلسید بی‌سرب کلوگولیز یعنی اسید دانامی‌آمینو از دهیدروژن اثر دارد که نسبت کاهش میزان گلوکولیز مقدار سرب جذب شده از خاک توسط ریشه بستگی به واژگی‌های فیزیولوژیکی گیاهان مانند نوشته، سن و سیستم ریشه و واژگی‌های فیزیوکمپیا خاک مانند طریقت تبادل کاتیون، محصول کربنات کلسیم، ماده آلی pH و فلزات سرب در نیاز ناشنازی داد که با افزایش غلظت آلودگی سرب در محیط، تجمع سرب در ریشه گیاه واژگی‌بافته و میزان آن در ریشه بیشتر از بخش هوايی بوده است که نشان دهنده تحکم کم فلز و انتقال ناجیان به بخش هوايی می‌باشد (Zimdahl, 1998). بگونیا و همکاران (Begonia elatior Zimdahl, 1998) نیز نشان دادند که خردل هندی به‌دلیل تولید نهادی یا گونه مورتی در پالایش سرب می‌باشد، ولی 95/95 از سرب در ریشه آن انبساط می‌شود. مطالعه انجام شده در گونه مرنی (Kochia prostrate) اطراف کارخانه سیمان فیروزگو کشور داد که میزان سرب در اندازه زیری‌میلی‌ای این گیاه بیشتر از اندام
تشریح هر فاکتورقیمت زیست بوم گیاهان/ دوره ششم، شماره دوازدهم، بهار و تابستان 1397

Ogunkunl and (1395) در این راستا اوگونکونل و همکاران (Fatoba, 2014) در تحقیقاتشان بر روی گونه ناتخ خروس نیز به تهیه مشابهی دست پیدا کردند. اثباتگی سرب در رشته خیاط کی بی اسکارکارهای تحمل برخی گونه‌ها محسوب می‌شود. در این گیاهان بخش اعظم سرب جذب شده متحمل به دیواره سلولی بایق می‌ماند (Marschner, 1995). بین شده است که فرا این اصول، منعکس برای تجمع سرب در رشته تنظیم بر سبک خصوصاً به صورت پیروپسفات در طول دیواره سلولی می‌باشد (Chaney and Ryan, 1993). همچنین گروهی از محض‌شناخت، بر این باورند که استفاده از مکانیسم‌های درون سلولی در گیاهان، سرب را در داخل و اکتول سلول‌های ریشه مهار کرده و از حرکت و خروج آن را به سمت آنده‌های چوبی ممنوع می‌نماید (Lasat, 2002).

نتایج مربوط به جذب فلزات نشان می‌دهد که تحمل و انتقال فلز از رشته به بخش هواپی اغلب همبستگی منفی داشته و حفظ فلز در رشته با افزایش تحمل همراه است (Harmens et al., 1993). در این تحقیق، میزان پیوام ریشه و بخش هواپی هر دو گونه خردان انتوپی و هندی با افزایش آلودگی سرب خاک در مقابل با گیاه شاهد تفاوت معنی‌داری را نشان نداد. این نتایج به این میزان پیوام‌هایی که در زمین‌های شاهد سرب در خاک‌های آتود کاهش نیافت و با افزایش آلودگی سرب در خاک‌های آلوده گسترش و تغییر زیستی در رشته هر دو گونه افزایش یافت. بیشتر می‌رسد مانع از انتقال سرب به اندام‌های هواپی‌ی که از دلایل تحمل گیاه خردان انتوپی و هندی نسبت به غلفت‌های سرمای سرب بوشهر نشان داده‌های نقش رشته در نگهداری سرب اضافی می‌باشد. فن آوری گیاه‌پالایی بر حسب نوع آلودگی‌ها، شرایط منطقه، درجهی اصلی مور دیاز و لغزه گیاهی می‌باشد. بنابراین می‌توان نتیجه گرفت که محدود کردن آلاینده‌ها و به صورت استخراج گیاهی جهت حذف آلاینده‌ها مورد استفاده قرار گیرد (Thangavel and Subhuram, 2004). با توجه به اینکه برگ می‌باشد گیاهان مناسب در استفاده در نتیجه‌گیری، تحمل غلفت‌های آلاینده‌ای گیاهان سنگین، تولید مقادیر زیاد زئست توده‌های ریشه‌ای و ناتوانی گیاه در انتقال مقادیر زئست آلاینده‌های فلزی از رشته به اندام‌های هواپی می‌باشد (Ghosh and Singh, 2005) که در صورت اینکه گیاهان دارای فاکتور تغییر زیستی بیشتر باشند و فاکتور انتقال بایان از نتایج تغییر فلزات سنگین در خود نیز نتیجه‌گیری نموده که هر دو گیاه خردان انتوپی و هندی با توجه به زئست توده، شاخه‌ای نتیجه نمی‌گیرد و نسبت سرب رشته به خاک بالا (فاکتور تغییر زیستی) چنین جهت بازشکافته‌ای آتود به سرب موفقیت

52
خواهند بود. از سوی دیگر، اگر استفاده از این دو گیاه با هدف استخراج گیاهی باشد، نتیجه این تحقیق نشان داد که در آلدگی بالای سرب گیاه خردل ابتوبی در مقایسه با خردل هندی بهدلیل غلظت سرب و فاکتور تغییری بهبود هوای بیشتر و عدم کاهش رنگ‌زدهی وی فتوسنتزی دارای عملکرد بهتری می‌باشد.

سیاست‌گذاری

این پژوهش با کمک مالی شماره ۹۵۰۶۴ ساخت توسعه زیست‌فناوری و حمایت از پژوهش‌گران و فن‌آوران کشور انجام شده است.

منابع

آنجم، ن.آ.، عمر، س.، احمد، ا.، اقبال، م. ۲۰۰۸. پاسخ‌ها میزان پاسخ‌های اکسایدی اکسایدی در انواع مختلف بسیاری از مزارع در سطح کشور در استان گیلان با استفاده از GIS. ژنراتور ف.، نورتانش، ر.، طالبانی، م.، حجی، س. م. ۱۳۸۳. بررسی غلظت سرب، روی و مس در خاک و گونه در اطراف کارخانه سیمان فیروزکوه، نشرین حفاظت زیست‌محیط. Kochia prostrata(L.) Schrad. مرتبی: گیاهان، ۸:158-165.

Begonia, G.B., Davis, C.D., Begonia, M.F.T., Gray, C.N. 1998. Growth responses of Indian mustard (Brassica juncea) and its phytoextraction of lead from a con-

