(Lilium ledebourii (Baker Boiss) در دو روش‌گاه کلاژدشت و اسلام

شاکه فهارسی ۱، علی‌الهی حمامی ۲، حمید رضویزاده ۲

۱ دانشجوی دکتری مرتعداری، دانشکده مرتع و آبخزداری، دانشگاه علوم کشاورزی و منابع طبیعی، گرگان
۲ استاد رشته مرتع، دانشکده مرتع و آبخزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان

تأمیر بر اثرات این گونه از روش‌گاه سوسن چپ‌چارگ در مرحله رشد در دو روش‌گاه مختلف آن جام. به‌دنبالی منظور در دو روش‌گاه کلاژدشت و اسلام در سه مرحله رشد (روشی، گل دهی و بذردهی) اقدام به نمونه‌برداری از اندازه‌های گیاه با ضریب تصادفی در ۳ تکرار و در هر تکرار ۵ نمونه گیری شد. سپس شاخص‌های ارزش گیاهی شامل پرورش، خام، درصد سلوله نهایی و فاصله پایه گیاهی و عرض دراز و ارتفاع متابولیسم‌ی در آزمایشگاه با روش‌های استاندارد تعیین شدند. به‌منظور بررسی اثر تفکیک مرحله رشد و روش‌گاه‌ها از مدل رگرسویی (GLM) و مقایسه میانگین‌ها از آزمون دانک در نرم‌افزار SPSS استفاده شد. نتایج این تحقیق نشان داد که

shokrollahi.sh93@yahoo.com

نویسنده مسئول: ۱۷۷
مقدمه
سوسن چلخرار با نام علمی Lilium ledebourii (Baker) Boiss از جمله گونه‌های گذشته و Lilium ledebourii (Baker) Boiss از نظر تغییراتی که از روش تغییراتی بر اهمیت بوده و تختیی از جنس Lilium گیاهی است از دیگر این جنس تقیب‌ال명اء ۱۰۰ گونه است که در گیاه‌های اوراسیا و آمریکای شمالی برآمده و پیشینه گونه‌های Lilium ledebourii از نظر تغییراتی که از تغییراتی بر اهمیت بوده و تختیی از جنس Lilium گیاهی است از دیگر این جنس تقیب‌ال명اء ۱۰۰ گونه است که در گیاه‌های اوراسیا و آمریکای شمالی برآمده و پیشینه گونه‌های Lilium ledebourii از نظر تغییراتی که از تغییراتی بر اهمیت بوده و تختیی از جنس Lilium گیاهی است از دیگر این جنس تقیب‌ال명اء ۱۰۰ گونه است که در گیاه‌های اوراسیا و آمریکای شمالی برآمده و پیشینه گونه‌های Lilium ledebourii از نظر تغییراتی که از تغییراتی بر اهمیت بوده و تختیی از جنس Lilium گیاهی است از دیگر این جنس تقیب‌ال명اء ۱۰۰ گونه است که در گیاه‌های اوراسیا و آمریکای شمالی برآمده و پیشینه گونه‌های Lilium ledebourii از نظر تغییراتی که از تغییراتی بر اهمیت بوده و تختیی از جنس Lilium گیاهی است از دیگر این جنس تقیب‌ال명اء ۱۰۰ گونه است که در گیاه‌های اوراسیا و آمریکای شمالی برآمده و پیشینه گونه‌های Lilium ledebourii از نظر تغییراتی که از تغییراتی بر اهمیت بوده و تختیی از جنس Lilium گیاهی است از دیگر این جنس تقیب‌ال명اء ۱۰۰ گونه است که در گیاه‌های اوراسیا و آمریکای شمالی برآمده و پیشینه گونه‌های Lilium ledebourii از نظر تغییراتی که از تغییراتی بر اهمیت بوده و تختیی از جنس Lilium گیاهی است از دیگر این جنس تقیب‌ال명اء ۱۰۰ گونه است که در گیاه‌های اوراسیا و آمریکای شمالی برآمده و پیشینه گونه‌های Lilium ledebourii از نظر تغییراتی که از تغییراتی بر اهمیت بوده و تختیی از جنس Lilium گیاهی است از دیگر این جنس تقیب‌ال명اء ۱۰۰ گونه است که در گیاه‌های اوراسیا و آمریکای شمالی برآمده و پیشینه گونه‌های Lilium ledebourii از نظر تغییراتی که از تغییراتی بر اهمیت بوده و تختیی از جنس Lilium گیاهی است از دیگر این جنس تقیب‌ال명اء ۱۰۰ گونه است که در گیاه‌های اوراسیا و آمریکای شمالی برآمده و پیشینه گونه‌های Lilium ledebourii از نظر تغییراتی که از تغییراتی بر اهمیت بوده و تختیی از جنس Lilium گیاهی است از دیگر این جنس تقیب‌ال명اء ۱۰۰ گونه است که در گیاه‌های اوراسیا و آمریکای شمالی برآمده و پیشینه گونه‌های Lilium ledebourii از نظر تغییراتی که از تغییراتی بر اهمیت بوده و تختیی از جنس Lilium گیاهی است از دیگر این جنس تقیب‌ال명اء ۱۰۰ گونه است که در گیاه‌های اوراسیا و آمریکای شمالی برآمده و پیشینه گونه‌های Lilium ledebourii از نظر تغییراتی که از تغییراتی بر اهمیت بوده و تختیی از جنس Lilium گیاهی است از دیگر این جنس تقیب‌ال명اء ۱۰۰ گونه است که در گیاه‌های اوراسیا و آمریکای شمالی برآمده و پیشینه گونه‌های Lilium ledebourii از نظر تغییراتی که از تغییراتی بر اهمیت بوده و تختیی از جنس Lilium گیاهی است از دیگر این جنس تقیب‌ال명اء ۱۰۰ گونه است که در گیاه‌های اوراسیا و آمریکای شمالی برآمده و پیشینه گونه‌های Lilium ledebourii از نظر تغییراتی که از تغییراتی بر اهمیت بوده و تختیی از جنس Lilium گیاهی است از دیگر این جنس تقیب‌ال명اء ۱۰۰ گونه است که در گیاه‌های اوراسیا و آمریکای شمالی برآمده و پیشینه گونه‌های Lilium ledebourii از نظر تغییراتی که از تغییراتی بر اهمیت بوده و تختیی از جنس Lilium گیاهی است از دیگر این جنس تقیب‌المن
شکوفه شکرکالیه و همکاران

و چای کاربرد دارد، در زاین نیز این گیاه به صورت مخلوط با برنج و نیز در انواع خورش و زله استفاده می‌شود (Choi, 2003). نتایج نشان داد که مایه‌های گونه‌های سوسن‌های مورد بررسی قرار گرفته است، در کشور کره وی و همکاران (Lee et al., 2007) ارزش غذایی دو گونه سوسن کرای را بررسی کردند. نتایج نشان داد که فلزات‌هایی که در آریا رطوبت 69 درصد، 5/5 تا 3/0 درصد پروتئین خام، 44/1/2% چربی خام، 64 درصد کربوهیدرات و 37/2% 2/1 درصد خاستن خام است، همچنین این دو گونه دارای 19 پلی‌سازارکید غیر نشان‌های می‌باشند. براساس نتایج بدست آمده این دو لیموی به‌دلیل برخوردی از مقادیر بالای پلی‌سازارکید و برونتین به‌عنوان گیاهان خوراکی ارزشمند مطرح هستند. در مطالعه کاواغیشی و میورا (1996)، تغییرات قلمی در محتوای نشیمنی لیلی مورد بررسی قرار گرفت. غلظت N و P در پشت‌خیه Liliium leichthinii Hook f. این گیاه بعد از انجام داد ماه زمان بین‌بود و پس از آن تا زمان برداشت کاهش یافت. در پیازهای قدیمی، غلظت عناصر در مرحله گل‌دهی در ماه جولای نیز کاهش یافت. با این حال، مقادیر N و P در بهره بین دوره کاشت و گل‌دهی تغییرات انگکی دانست و پس از آن بسیار افزایش یافت. محتوای Mg برگ و پیازها در طی فصل رشد کم بود. در مرحله برداشت، محتوای K برگ و پیازهای تجربه و تحلیل بود. غلظت کلسیم برگ و مسیزی ساختمان در وزن خشک و برای هر بونه بوئرس پس از بخش‌تری Mg مایشی با افزایش رشد، افزایش یافت. در مرحله برداشت، پشت‌خیه‌های هولیه‌های دارایی و Ca نسبت به پشت‌خیه‌های زیرزمینی بوته. در بالا بر چسب ارزش غلظات می‌باشد. افزایش بهره‌برداری و انجام آزمایش‌های حفاظتی مورد بررسی قرار گرفته است که از آن جمله می‌توان به گونه گچی (Astragalus fridae) که روش‌های آن اقدم بپذیرد است که نادری و همکاران (2017) که مشاهداتی از آن جمله تغییر شرایط اقلیمی، وقوع وابستگی به فعالیت‌های انسانی و به‌منظور استفاده به‌پیش از

179
مشه صحافی‌های یکینه روش‌ها دهه ششم، شهره دوازدهم، پنجم و ناپنجم
1397

طبقتی در جهت دست‌پایی به رفاه فروزن را می‌توان نام برد. حفاظت‌های همه گونه‌های گیاهی کم‌کام
و نادر کشور به منظور حفظ ذخیره‌های زیستی گیاهان کشور به‌طور حاشیه‌ای است. UCN
یکی از گیاهان با ارزش مرتعی است که برای فضاهایی مانند Iedebourii
چای گرفته است. طی سال‌های Associated نیز برای این گونه به‌طور مستمر است. بررسی
عوامل اندرکاری و توانایی و تکنیک‌هایی برای بقای این گیاه‌هایی در ضروریتی در جهت حفاظت آن
در جهت توسعه اقتصادی و زیست‌محیطی می‌باشد. بنابراین به‌نوبه‌ای که اهداف و لر حفاظت
به عنوان اثر طبیعی و یک گیاه منحصر به فرد در ایران و برای کاهش خسارت و ولج‌گیری
 homeowner در افزایش گیاه‌های ارزش غذایی این گیاه در مراحل مختلف رشد می‌باشد. است تا با
امنیت وجود شرایط غذایی در این گونه هم قابلیت دیگری از این گونه سنگین و معرفی شده و هم چون
خطر حفاظت چه به‌طور زیست‌محیطی انتظارات حفاظتی به‌ویژه جلوگیری از خسارت حمله به این گیاه
از روش‌های بیشتری از رویشگاه‌هایی آن اقدامات حفاظتی به‌ویژه جلوگیری از خسارت دام به این گیاه

مواد و روش‌ها

برای مطالعه ارزش غذایی Iedebourii از سه استان محل روشی این گونه، دو رویشگاه
این گونه در استان مازندران و گیلان انتخاب گردید. منطقه کلی درست با مختصات جغرافیایی 51°
53’ طول شرقی و 31° 4’ عرض شمالی و با ارتفاع 2290 متر از سطح دریا در استان
مزار عراق واقع شده است. متوسط بارندگی سالانه 1274 میلی‌متر و میانگین ذوب آب‌های صحرایی
منطقه 16 درجه سانتی‌گراد است. از نظر وضعیت آب‌شناختی، خاک در اکثر مناطق عمقی تا نیمه
عمقی بافت متوسط 1.5 سانتی‌متر و ساختمان داخلی تا چند و جهی‌دنار. فعالیت بیولوژیکی خاک خوب
و غنی از مواد آتی است. بطور کلی خاک‌های این منطقه از نظر شیمیایی و مواد غذایی محدودبندی
برای رشد گونه‌های بومی تداری (پرور باینیا و دادور، 1384). منطقه اسمل مرتعی است که در نوارهای
مختصات جغرافیایی بطول 30° 34’ و عرض 50° 43’ و ارتفاع 1846 متر از سطح دریا
می‌باشد. سطح‌های غالب منطقه 31 درجه و جهی عواملی آن غربی می‌باشد. مشترک بارندگی سالانه
منطقه حدود 186 میلی‌متر و میانگین دمای هوا 16 درجه سانتی‌گراد است. نوع سنگ مادر
سپیلیسی بافت خاک لیمون سنگ تا لیمون رسی سنگ و pH خاک 5/5 تا 6/3 که (نوربوردی رزه و
همگاران، 1395).

180
شکوفه شکرکلیه و همکاران

جهت تعیین شاخص‌های کیفیت علوفه Lilium ledebourii در هر یک از مراحل رشد شامل رشد اولیه، خریداری و پرورش در هر تکرار در نتیجه گیری گردید. پس از خشک و آسیاب گردی، مقدار سوخت‌های کیفیت علوفه در آزمایشگاه با استفاده از اندازه‌گیری شد. پس از اندازه‌گیری درصد نیتروژن (N) به روش کلیدال با استفاده از رابطه ۱، درصد پروتئین خام (CP) نمونه‌ها برآورد شد.

\[
\text{CP} = 6.25 \times \text{N}\% 
\]

رابطه ۱

الیاف نامحلول در شوینده اسیدی (ADF) (Oddy et al., 1983) با استفاده از روش آنالیز فن سوست (Soest, 1963) اندازه‌گیری شد. درصد ماده خشک قابل هضم (DMD) نمونه‌ها توسط معادله پیشنهادی و همکاران (1990) بر مبنای درصد ازت (N) و الیاف نامحلول در شوینده اسیدی (ADF) نمونه‌ها برآورد شد.

\[
\text{DMD}\% = 83.58 - 3.824 \text{ADF} + 2.262 \text{N}\% 
\]

رابطه ۲

انرژی متابولیسمی (ME) توسط معادله پیشنهادی کمیته استاندارد کشاورزی استرالیا (1990) (رابطه ۳) انجام گرفت.

\[
\text{ME (MJ/kg)} = 0.17 \text{DMD}\% - 2 
\]

رابطه ۳

که در اینجا، درصد هضم‌پذیری ماده خشک نمونه‌ها و ME انرژی متابولیسمی بر حسب مکارول بر کیلو گرم ماده خشک می‌باشد. انرژی قابل هضم نیز از رابطه ۴ محاسبه گردید.

\[
\text{DE (Mcal/kg)} = 0.0428 \text{DMD}\% + 0.027 
\]

رابطه ۴

به منظور بررسی اثر متقابل روش‌گاه و مراحل رشد روی متغیرهای کیفیت علوفه از مدل رگرسیون GLM ۳ و برای مقایسه میانگین‌ها از آزمون مقایسه دانگن استفاده شد. تجزیه تحلیل آماری داده‌ها با استفاده از نرمافزار SPSS ۱۸ انجام شد.

---

3 Association of Official Analytical Chemists (AOAC)
4 Standing Committee on Agriculture (SCA)
5 General Linear Model
نتایج تجزیه واریانس مقادیر شاخص‌های کیفیت علفه

در جدول یک ارائه شد. تجزیه واریانس داده‌ها نشان می‌دهد که اثرات اصلی روی‌شگاه و میانگین مقادیر بروتین خام، الیاف نامحلول در شوینده اسیدی و اثر میانگین فنولوزی بر میانگین همه مقادیر مورد بررسی معنی‌دار است. اثر متفاوت روی‌شگاه × مرحله رشد بر میانگین مقادیر بروتین خام الیاف نامحلول در شوینده اسیدی و درصد ماده خشک قابل هضم معنی‌دار بود؛ اما روند مقادیر آنزیم متابولیسمی و آنزیم قابل هضم فاقد اثر معنی‌دار بود. جدول ۱.

همچنین مقایسه میانگین مقادیر بروتین خام الیاف نامحلول در شوینده اسیدی، ماده خشک قابل هضم، اثر میانگین فنولوزی در شرایط مختلف فنولوزی در L. ledebourii مشاهده شد. در میانگین فلزاتی، در الیاف نامحلول در شوینده اسیدی رشد اثر افزایش یافته است.

<table>
<thead>
<tr>
<th>شاخص‌های کیفیت علفه</th>
<th>میانگین F</th>
<th>روند</th>
<th>میانگین F</th>
<th>مرحله</th>
</tr>
</thead>
<tbody>
<tr>
<td>المزای</td>
<td>ME</td>
<td>SHG</td>
<td>ADI</td>
<td>CP/</td>
<td>SHG</td>
<td>ADI</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>

جدول ۱- تجزیه واریانس مقادیر شاخص‌های آرزش غذایی در مرحله مختلف در دو روی‌شگاه

۱۳۹۷
جدول ۳- میانگین (۳ اشتباه از معیار) ترکیبات شیمیایی کلاردشت در مرحله مختلف رشد در لیلیوم لدوبوری

<table>
<thead>
<tr>
<th>افزایش یافته</th>
<th>مقدار انرژی</th>
<th>هضم پروتئین</th>
<th>هضم بروز</th>
<th>مرحله رشد</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME (Mj/KgDM)</td>
<td>DMD (%)</td>
<td>CP (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مرحله ۰</td>
<td>مرحله ۱</td>
<td>مرحله ۲</td>
<td>مرحله ۳</td>
<td></td>
</tr>
<tr>
<td>±/۰.۰۲۱</td>
<td>±/۰.۳۰۴</td>
<td>±/۰.۲۲۴</td>
<td>±/۰.۲۹۴</td>
<td>±/۰.۲۲۱</td>
</tr>
<tr>
<td>±/۰.۰۲۷</td>
<td>±/۰.۲۷۲</td>
<td>±/۰.۱۸۴</td>
<td>±/۰.۱۲۷</td>
<td>±/۰.۱۸۴</td>
</tr>
<tr>
<td>±/۰.۲۴۷</td>
<td>±/۰.۲۷۲</td>
<td>±/۰.۲۲۴</td>
<td>±/۰.۲۲۴</td>
<td>±/۰.۲۷۲</td>
</tr>
<tr>
<td>±/۰.۱۵۳</td>
<td>±/۰.۱۵۳</td>
<td>±/۰.۱۵۳</td>
<td>±/۰.۱۵۳</td>
<td>±/۰.۱۵۳</td>
</tr>
<tr>
<td>±/۰.۲۱۳</td>
<td>±/۰.۲۱۳</td>
<td>±/۰.۲۱۳</td>
<td>±/۰.۲۱۳</td>
<td>±/۰.۲۱۳</td>
</tr>
</tbody>
</table>

نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله رشد فیتولزی ADF، نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله Roshagاه باشد. نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله Roshagاه باشد. نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله Roshagاه باشد. نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله Roshagراه باشد. نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله Roshagراه باشد. نشان داد که شاخص DMD در مرحله DE باشد. نشان داد که ADF در مرحله DMD، با شاخص DMD در دو روشگاه باشد. نتایج حاصل از آزمون دانکن در طی مرحله Roshagراه باشد. نشان DMD و ME در منطقه.
نتایج این بررسی نشان داد که ارزش غذایی گونه Lilium ledebourii در سه دوره فنولوژی و دو رویشگاه مورد مطالعه اختلاف معنی‌داری داشت. به‌طوری که میزان پروتئین خام در دوره‌های فنولوژی به‌ترتیب در رویشگاه دو‌موسی و در رویشگاه دوسلوی بهترین نتایج داشت. همچنین این مطالعه نشان داد که در رویشگاه کلاژن‌شده است، اما مقدار سارب شاخ‌ها در این رویشگاه از رویشگاه کلاژن‌شده کمتر می‌باشد.

نتیجه‌گیری

از توصیه‌های بیشتری به عنوان بخش‌های غیر ساختمانی و پروتئین بیشتری نسبت به ساقه دارد. بنابراین با افزایش رشد گیاه، میزان پروتئین آن کمتر می‌شود (کمالی و همکاران، 1393). همچنین میزان محلول‌های سلولی، پروتئین خام و فسف هگان رشد فعال گیاهان بیشترین مقدار را دارا است و با ظهور دوره خواب گیاهان این عناصر کاهش خواهند یافت. این کاهش‌ها با ظهور مرحله خواب از تغییر مواد غذایی برگ‌ها و ساقه‌ها ناجا و ریشه‌ها ناشی می‌شود (Ahmadi et al., 2005).

از طرف دیگر بینظیر می‌رسد که تغییرات محیطی با تأثیر بر شرایط اکولوژیکی گیاه و تغییرات فیزیولوژی و سوخت و ساز گیاهی سبب تغییرات در میزان و نسبت کمی و کیفی مواد گیاهی شده است (Holechek et al., 2001). نسبت غذایی گیاه که ممکن است در فرآیند تغییر در نسبت برگ به ساقه و نسبت تغییرات مورفولوژی، تغییرات در رفتارهای شیمیایی در قسمت‌های مختلف گیاه بر روی کیفیت غذایه تأثیر می‌گذارد. البته مطالعات زیادی نشان دهنده این تأثیرات را تایید می‌کنند (مهدی‌آبادی و همکاران، 1391، خلخالی و همکاران، 1395).

در تحقیق حاضر، میزان ADF گونه‌ها با بیشترین مراحل رشد، زیاد شد و مرحله بذرده‌داری ADF بیشترین مقدار داشت. این مطالعه میانگین شاخ‌ها در رویشگاه اصلی کمتر از رویشگاه کلاژن‌شده می‌باشد. با توجه به اینکه گیاه به موانع رشد نیاز به بیان‌های استحکامی و نگهبانی‌های دارد، تفاوت بیشتری میزان الاف خام نشان دهنده افراز بخش سلول‌های لیگنینی و لیف‌های (Mc Donald et al, 1996). مشابه با این تحقیق، لین و کوهن (Linn and Cuehn, 1994) نیز به نتایج مشابهی دست یافتند. سری شاخ‌های ارزانی و همکاران (1396) نیز به نتایج مشابهی دست یافتند.
نکته علوفه نیز که در روی ADF محاسبه می‌شود، طبیعتاً از تغییرات آن پرورا می‌گردد. از جمله میزان ارزی متانولیسمی و نیز هضم‌پذیری ماده خشک که با پیشرفت دوره روش گیاه نژول می‌کند (ازانی و همکاران، ۱۳۸۵). ارزی متانولیسمی (Lilium ledebourii) می‌باشد. مقایسه میان‌گین‌ها نشان داد که اختلاف معنی‌داری بین آنها وجود دارد. به‌طوری‌که در مرحله رویشی، گیاه از میزان ارزی بالاتری برخوردار است. در مورد هضم‌پذیری گیاهان مرتعی، مرحله رشد گیاه از عوامل مهم و تأثیرگذار می‌باشد. زیبا قابلیت هضم علوفه برخورداری می‌کند و در نتیجه کامل شدن دوز منجر به کاهش ارزی متانولیسمی و ارزی خاص گیاه می‌شود. افزایش الاف خام باعث کاهش پروتئین، ارزی متانولیسمی و در نهایت کاهش ارزش غذایی گیاهان می‌شود (Uniyal et al., 2005).

از روش تغذیه‌ای علاوه بر وزن‌گذاری گونه، تحت تأثیر شریاغی اکولوژیکی مانند اقلیم، سطح سفره، اب زیرزمینی و شرایط اکوسیستمی می‌باشد. در این تحقیق نیز شرایط رشد اکولوژیکی متغیر (کاراکتر و اسامی) بر برخی شاخص‌های کیفیت تأثیرات معنی‌داری داشته است. به‌طوری که شاخص‌های پروتئین خام، الاف ناحیه در شونده، اسیدی و ارزی متانولیسمی داری اختلاف معنی‌دار در دو روش‌گاه می‌باشد. از ناحیه که روش‌گاه کاراکتر در ارتفاع بالاتری نسبت به روش‌گاه اسالم قرار گرفته است، به نظر می‌رسد رشد گیاه بعلت دما و بارش مطلوب تر در روش‌گاه کاراکتر مقایسه با اسالم بهتر شده است. در مطالعات انجام شده تأثیر ارتفاع از سطح دریا در پراکنش مهم ارزیایی شده است که به‌عنوان ارتباط بین دما (نسبت عکسی) و نیاز به سرم در پیاس گونه لیلیم لدبوری (Lilium ledebourii) (۱۳۸۷) الهیه لزم به توضیح ارتباط شریاغی‌های نیز در دو روش‌گاه متغیر بوده است، طوری که که در روش‌گاه اسالم، Lilium ledebourii در پناه سرخ و روش‌گاهی به داشتن رش بسیار پراکندگی بود در حالی که در روش‌گاه متغیر بوده است، طوری که در منطقه کاراکتر ضمن داشتن تراکم خوب، عموماً در پناه درختی از جمله سبز مجافی و اوری بوده است. همچنین شیب و عمق خاک در روش‌گاه نیز با یکدیگر کم‌مترکیب بوده است. در منطقه کاراکتر بالای رش بستگی، شبیه رش خاک و عمق کم خاک بود در حالی که در روش‌گاه کلاردشت علیرغم قرار گرفتن در ارتفاع بالای هالس ته ماهوری، شبیه کم و خاک نسبتاً عمیق بوده است. بنابراین باید توجه کرد که تأثیر عوامل اکولوژیکی همچون بی‌سیمی و در جهت افزایش و یا کاهش تمامی خصوصیات مؤثر در کیفیت علوفه نیست، بلکه تغییرات نامنظم
تشریح حفاظت زیست‌بوم گیاهان/ دوره ششم، شماره دوازدهم، بهار و تابستان 1397

است، طاریکی که در برخی فاکتورهای کیفی افزایش و برخی کاهش می‌یابند، آذری‌زاده (1386) و رسولی و همکاران (1390) نیز ضمن تأیید تأثیر رویشگاه‌های مختلف تغییرات نامنظم در مورد تأکید قرار می‌دهند.

برخی از محققین (2001; Crispim et al., مراحل
رشد را مهم‌ترین عامل مؤثر بر ترکیب و ارزش غذایی گیاهان مرتبط دانسته‌اند و بیان می‌کنند که با افزایش سن گیاه، کیفیت علوفه کاهش می‌یابد. در اغلب مطالعات نیز دوره رویش را مهم‌تر از رویشگاه بیان می‌کنند. نتایج این تحقیق نیز نشان می‌دهد که درد رشد تأثیر بیشتری نسبت به رویشگاه در میزان شاخص‌های مختلف کیفیت داشته است. در هر دو رویشگاه بیشترین پروتئین خام، قابلیت هضم و انرژی منابعی در دوره رویش و بیشترین میزان ADF در دوره بذردهی می‌باشد. لذا می‌توان نتیجه گرفت که تأثیر دوره رشد بر شاخص‌های مختلف کیفیت بیشتر از تأثیر رویشگاه می‌باشد که با نتایج تحقیق رسولی و همکاران (1390) ارزوی و همکاران (1392) هم‌خوانی دارد.

با توجه به نتایج بدست آمده از بررسی ارزش غذایی Liliim ledebourii گونه در مرحله رویشی از نظر شاخص‌های کیفیت علوفه در حد مطلوبی قرار داشته و در این مرحله بیشترین خسارت را از جمله خواهید دید. بنابراین برای این گونه باید از تمرکز بر روی تولید انرژی منابعی توجه به میزان شاخص‌های مورد بررسی می‌توان نتیجه گرفت که این گونه با وجود اینکه به‌عنوان یک گونه زیبایی شناخته می‌شود، اما با توجه به میزان پروتئین و انرژی منابعی از ارزش غذایی مطلوبی برخورد ندارد. به‌طوری‌که میزان پروتئین خام (در مرحله رویشی) در Liliim ledebourii یا مقدار پروتئین خام در برخی (حشمتی و همکاران، 1384) که از ارزش غذایی بالایی برخورد ندارند قابل مقایسه می‌باشد که این امر لزوم تحقیقات بیشتر در زمینه توانبخشی غذایی این گونه را نشان می‌دهد.

از حفاظت از گونه‌های گیاهی به دو روش حفاظت در رویشگاه‌های طبیعی و حفاظت در خارج از رویشگاه امکان‌پذیر است. حفاظت در رویشگاه‌های طبیعی از طریق بستن مناطق حفاظت‌شده، ذخیره‌گاه‌ها و قرق–ها امکان‌پذیر خواهد بود. با توجه به نتایج بدست آمده و برخورد از ارش غذایی و نظر به اینکه رویشگاه‌ها طبیعی این گونه در این تحقیق جزو مناطق تحت مدیریت سازمان محیط‌زیست و سازمان جنگل‌ها، مرتع و آبخزداری نیست، برای حمات از این گونه باید از طریق

186
شکوفه‌های شکرالیپی و همکاران

علامت قرق، اثر طبیعی با ذخیره‌گاه‌های گیاهان دارویی برای روبشگاه‌های آن، به سرعت اقدام شود. با توجه به تأثیر بردشکر گیاه جمعیت این گیاه، بهتر ممنوعیت هر گونه تری لامب دام در محدوده روبشگاه‌ها و ممنوعیت بردشکر آن اعلام شود. همچنین حفاظت در خارج از روبشگاه طبیعی در بانک زن یکی از روشن‌های حفاظت این گیاه است که در واقع نگهداری گونه‌ها در دوره‌های کوتاه مدت با طولانی مدت در شرایط فرساد محسوب می‌شود. این بندور با قطعات گیاهی می‌توان برای احیای روبشگاه‌های طبیعی در اینده استفاده کرد و در صورت فراموش نشدن شرایط احیای در روبشگاه‌های طبیعی می‌توان این گونه را در باغ‌های گیاه‌شناسی کاشته و حفاظت کرد.

در برسی‌های اینده نیز می‌توان بیش‌الحال نمود که سابیر شاخ‌های آزمان غذایی و عناصر معدنی این گیاه در مراحل مختلف رشد را تحت تأثیر شرایط اکولوژیکی روبشگاه مورد بررسی قرار داد و در نهایت علاوه بر تأثیر بی‌پاسال تغذیه‌ای آن و نیز برخورداری آن از خودکارکردن و ترجیح آن توسط دام برای جرا، نسبت به حفاظت این ذخیره زننیکی و جلگیری از انقرض آن هر چه سریع‌تر اقدام نمود.

منابع
آذری‌نیا، ج، اسماعیل‌پور، ی، مقدم، م، صادقی‌پور، ا (۱۳۸۶). بررسی تغییرات پروتئین‌های دموم و دوبه، سلول‌های عفونی درون‌های کوهی. Artemisia aucheri در مراحل مختلف رشد و در طیبعت ارتفاعی. مرتع، ۳۷: ۹۵۳-۹۵۹.

ازرایی، ج، احمدرضا، ع، آذری‌نیا، ج، جعفری، ع، ا (۱۳۸۵). تعبیری و مقایسه کیفیت عفونه پنج گونه مرتعی در مراحل مختلف رشد، علوم کشاورزی ایران، ۳۷: ۹۵۲-۹۵۹.

ازرایی، ج، قاسمی آریامی، ع، معتمدی، ج، فیله‌کش، ا، ا، معموری، م (۱۳۹۶). بررسی شاخ‌های کیفیت عفونه چند گونه مرتعی و مقایسه با حداکثر آن برای نیاز نگهداری واحد دامی چرکند در مرتع استیت سیور، خوش‌کیومه، ۳: ۹۱-۹۸.

پاداش دگرگون و خنثی‌پذیری، او، ا، نادری، ا، موسوی، او (۱۳۸۷). تأثیر غلظت‌های مختلف بی‌پاسال آدنین (Lilium) و نفتالین استیک اسید (BA) بر قابلیت سکه‌کشی در سوسن چهل‌گران (BAV) با استفاده از چرب‌فیل سیروخک در باغ‌های نهال و دژ. پژوهش‌های باغی، ۳: ۹۲-۹۲.

بورابایی، ج، دادور، خ (۱۳۸۴). تنوش گونه‌ای گیاهان چربی در جنگل‌های سرپ بوک کلاردرشت، مازندران، بیست‌شنبه‌ای ایران، ۳۰; ۲۳۳-۲۳۲.

۱۸۷
تشریح حفاظت زیست بوم گیاهان/ دوره ششم: شهره دوازدهم، بهار و تابستان 1397

ناوردریزاده، م. نیکویی، م. پوربابایی، ح. نقدی، ر. 1395. مطالعه اثر جاده‌های جنگلی بر ترکیب گونه‌های گیاهان علفی در جنگل‌ها (مطالعه موردنی: جنگل اسالم). بوم‌شناسی کاربردی، (۱): ۲۹.

خشنمی، غ. باقینی، م. بذرافشانی، ا. ۱۳۸۴. مقایسه ارزش غذایی ۱۱ گونه مرتعی شرق استان گلستان، پژوهش و سازندگی (۲۰۰۹): ۹۰-۹۵.

خلاصه امواجی، ل. خشنمی، غ. ذوفنی، ب. اکبرلو، م. ۱۳۹۵. تأثیر عامل روش‌گاه بر ارزش غذایی گونه گیاهی سوپرگری L Gundelia tournefortii در شمال شرق استان خوزستان، حفاظت زیست بوم گیاهان، (۴): ۳۱-۳۸.

رسولی، ب. امیری، ب. عصاره، م. ح. جعفری، م. ۱۳۹۰. تغییر ارزش غذایی گونه شورپندر در مراحل مختلف فنولولوژی در سه روش‌گاه متافات، تحقیقات مرتع و Halostachys caspica بیابان ایران، (۱۸): ۳۱-۴۲.

کریمانی، غ. ا. گیاهان دارویی، معطر، مرتعی و نادر مناطق حفاظت‌شده کالمند بهادران و کوه پافک. مجله محیطشناسی (۳۱) (۷۷): ۸۸-۹۸.

کمالی، ا. فوزنده، ا. طباطبایی، سن. احمدپور زنجیری، ا. ۱۳۹۳. تغییر ارزش غذایی گونه Aeluropus lagopides در مراحل استان بوشهر، علوم دانی (پژوهش و سازندگی)، (۱۰): ۸۸-۸۷.

محمی، ج. جمعاد، ز. بخشی‌خانی‌کی، غ. ر. ۱۳۹۵. چاپگاه حفاظتی شش گونه انحصاری مرزه در ایران. مجله طبیعت ایران، (۱۱): ۷۴-۷۸.

Lilioceris مجیب حق قدم، ز. بوسفوری، م. پاداشت، م. ۱۳۹۲. زیست‌شناسی سوسک faldernanni (Guerin.Meneville, (1829) (Col.:Chrysomelidae) سوسن چلچراغ در شرایط دام‌های مختلف. مجله پژوهش‌های جانوری (۳۲): ۲۴۴-۲۴۷.

سوسن جلچراغ در شرایط دام‌های مختلف. مجله پژوهش‌های جانوری (۳۲): ۲۴۴-۲۴۷.

مهدی ابادی، ش. مهدیوی، س. خ، رسولی، ب. علیزاده، ع. افتخاری، ج. مسالمی، م. ۱۳۹۱. تغییر ارزش غذایی گونه شورپندر در سه روش‌گاه شور، گیاه و زیست بوم، (۱۸): ۳۱-۴۰.


۱۸۸


