بررسی اثرات ناشی از چوب‌کشی زمینی بر خاک چنگل (مطالعه موردی: چنگل کوه‌بانه آزادشهر)

علي‌پرşa شهربایی ۱، مصطفی‌قلی‌پور راد ۲، احسان عبدی ۳

۱دانشیار گروه فضای سیز، دانشکده علوم زیست‌محیطی، دانشگاه سیستان و بلوچستان
۲دانشجوی دکتری، دانشکده علوم کشاورزی و منابع طبیعی، گرگان
۳دانشیار گروه چنگل‌داری و اقتصاد چنگل، برخی دانشگاه‌های کشاورزی و منابع طبیعی، کرج

تاریخ پذیرش: ۱۳۹۵/۱۲/۰۱
تاریخ دریافت: ۱۳۹۶/۰۳/۳۰

چکیده
مسیرهای چوب‌کشی محل اصلی عملیات به‌ورودیار در چنگل محسوب شده است. از ردیابی شکل و روابط در مناطق چنگلی به شمار می‌آید. این پروانه در چنگل کوه‌بانه آزادشهر واقع در استان گلستان انجام شد. هدف بررسی و تعیین میزان تغییرات چوب‌کشی، مقاومت (مقاومت به فرورود) و رطوبت خاک در ۲ تیم شلی شاهد (چنگل)، محل رد چرخ و سطح مسیر چوب‌کشی بود و در ۲ عمق (۱۰۰، ۲۰۰ و ۳۰۰ سانتی‌متر) بود. نتایج این بررسی نشان داد که میزان تغییرات چنگل تا حدی در زمان‌های مختلف (۴.۷، ۱۲.۴، ۴۰.۸ و ۸۰.۱) در منطقه شاهد افزایش معنی‌دار در سطح اطمنان ۱ دارد. مسیرهای چوب‌کشی، مقاومت به فرورود و رطوبت خاک در تیمار شاهد مقاومت به فرورود گزارش داده بود، ولی مقاومت به فرورود به رنج بود، نتایج بررسی نشان داد که رابطه خصوصی و معکوس در هر دو سطح ارتباط تغییرات چوب‌کشی - گوگردی (۰.۷) و تغییرات - مقاومت به فرورود (۰.۷) ۰.۹۴ بود. در این رابطه، افزایش مقاومت به فرورود می‌تواند مزایا مقدار مقطع‌های روی مسیر چوب‌کشی را کاهش دهد.

گوگردی، محدود کردن زمان چوب‌کشی، استفاده از منحرف‌گردیده‌های روابط در روی مسیر چوب‌کشی اشتهار خر.

اولین‌های کلیدی: حفاظت خاک، مسیرهای چوب‌کشی، تغییرات کیفیت خاک، منحراف‌گردیده‌های روابط در روی مسیر چوب‌کشی

alishahriari@eco.usb.ac.ir

نویسنده مسئول: ا.ر

۲۳۳
توجه هفاط فیست بوم گیاهان/ دوره ششم، شماره سیزدهم، پاییز و زمستان ۱۳۹۷

مقدمه

یکی از مهم‌ترین مسئله در بخش مهندسی چنگال، زیرساخت‌ها و تأثیر آنها بر محیط جنگل است.

بخش عمده‌ای از زیرساخت‌ها مربوط به مسیرهای چوپکشی است که نقش مهمی در چرخه خروج چوب از جنگل دارند. مسیرهای چوپکشی محیطی به‌منظور تردد ماهیان آتات چنگال به‌هدف خروج چوب هستند که می‌توانند اثرهای منفی بر سیستم متعادل چنگال ازجمله تخریب خاک و تولید رواناب و روابط در منطقه داشته باشند. فعالیت‌های بهره‌برداری توسط چوپکش‌های زمینی می‌تواند باعث تراکم، فشرده‌گی خاک و ایجاد شیار شود. همچنین تردد ماهیان آتات می‌تواند روی خواص هیدرولیکی خاک و میزان رواناب و روابط نقش مهمی داشته باشد (Safari et al., 2011; Zemke, 2011).

مطالعات متعددی در دنیا در خصوص مسیرهای چوپکشی ارائه شده و نظر نفوذپذیری، کوبیدگی و مقاومت به فروریز (هعومن شاخ ویژه از مقاومت خاک) صورت گرفته است (Snider and Miller, 1985; Cullen et al., 1991; Sutherland, 2000; Donaghi et al., 2010). در بین این شاخ‌ها، نفوذپذیری یکی از مهم‌ترین مطالعات زمینه‌ای است که تأثیر بهره‌برداری بر نفوذپذیری خاک بررسی شده است. (Snider and Miller, 1985; Cullen et al., 1991) به‌طورکلی نتایج مطالعات نشان دادهند که تردد باعث افزایش نفوذپذیری، مقاومت خاک و درنتیجه کاهش نفوذپذیری آن می‌شود. جلوگیری از نفوذ آب و گسترش ریشه‌ها، عدم انجام تبادل هوا و مواد مغذی در خاک و افزایش مقاومت رواناب و روابط در دستگاه شاخ ویژه خاک مشابه نفوذپذیری (Han et al., 2009) در مورد کوبیدگی خاک صورت گرفته است. برای مثال می‌توان به مطالعات (طوفعلان, ۱۳۲۵) و همکاران, ۱۳۸۷, جویباری و منجیلیان, ۱۳۸۹) اشاره کرد که مودی افزایش دستی نهادن خاک در اثر چوپکشی هستند. مطالعات نقده و همکاران (2009) می‌تواند به شیار شدن و به هم خویردگی خاک جنگل‌های اصلی گیلان و مطالعات عزیز و همکاران, ۱۳۱۲ و سالیک و ۱۳۱۴ نجفی نیز افزایش وزن مخصوص ظاهری خاک مسیرپذیرکنی و کاهش تخلخل خاک نسبت به محیط چنگال را در پی داشته. البته به نظر می‌رسد با توجه به دانی بودن مسیرهای چوپکشی در ایران، مرور بررسی کوبیدگی خاک بدون ارتباط وابسته به آن با مواردی مانند نفوذپذیری، رواناب، فرسایش و روابط توجیه زیادی نداشته باشد. خون تراکم به‌خود خود در زیرساخت شکه جاده و سیرهای چوپکشی یک عامل مهم از طبقه‌بندی مورد استفاده در زمینه تحقیقات نفوذپذیری در مناطق چنگال‌های ایران بسیار اندک اینکه است که از محدود سازه‌ها می‌توان به محمدی کیانی (۱۳۷۳) و داغستانی و همکاران, ۱۳۸۴) اشاره نمود. در مورد اول رابطه تخریب
علی‌رضا شهریاری و همکاران

جنگل و نفوذ‌پذیری و در مورد دوم نیز رابطه قطع گروهی و نفوذ‌پذیری بررسی و در هر دو مورد نتایج حاکی از کاهش نفوذ‌پذیری نسبت به مکان‌های شاهد بود. البته در زمینه تغییرات نفوذ‌پذیری مسیرهای چوبکی و با استفاده از وسایل اندازه‌گیری مستقل نفوذ‌پذیری، موردی در منابع فارسی یافته نشد. اهمیت این موضوع از آن جنبه اینکه چون مسیرهای چوبکی بستر مستندی برای برخورداری با زمین بدون پوشش است، احتمال ایجاد روان‌آمیزی و درنیاز به تولید روابط در آن‌ها بالا بوده و از طرف دیگر جنگ پژوه‌های گذشته نشان داده که رابطه کوی‌گی و نفوذ‌پذیری معکوس می‌باشد، درنتیجه کوی‌گی مسیرهای نیز مزید علت شده و پتانسیل فرسایش و تولید روابط در آن‌ها افزایش می‌یابد. با دانستن نوع و میزان تغییرات نفوذ‌پذیری می‌توان عملیات‌های مدیریتی پیش‌گیرانه برای آن‌ها طراحی و پیش‌بینی نمود.

با نویجه به مطالعه درک‌شده، هدف از انجام این مطالعه، بررسی خصوصیات فیزیکی خاک با تأکید بر نفوذ‌پذیری در اثر تردد مانند آلتر هوری‌داری بر روی مسیرهای چوبکی در فاز قسمت رد در جرخ و ریت مسیر و مقایسه آن با ناحیه شاهد (داخل جنگل) می‌باشد. از اهداف دیگر این تحقیق، کمی نمودن تغییرات نفوذ‌پذیری (شاخچ مناسبه جهت نشانی پتانسیل تولید روان‌آمیزی و روابط مسیرهای مردمی و روستایی) و بررسی رابطه بین نفوذ‌پذیری، کوی‌گی و مقاومت خاک است.

مواد و روش‌ها

منطقه مورد مطالعه

طرح جنگ‌نگاری گوهی‌تان با مساحت بالغ بر 676 هکتار در جرخه آبی‌ریز 389 از تقسیمات جنگل- های شمال کشور در جوز دوراده کل منابع طبیعی استان گلستان- گرگان واقع شده است. بررسی کوهی‌تان در حد شمال جرخه آبی‌ریز 89 قرار داشته است. این سری از شمال به روستاهای گوهی‌تان، مرزبان، فاضل‌آباد، خاندوز، ساده و وحیدی‌آباد از جنوب و غرب به طرح جنگ‌نگاری تغییر می‌یابد و شرق به طرح جنگ‌نگاری وطن مرکزی است. طول جغرافیایی منطقه مورد مطالعه بین 55 درجه و 10 دقیقه و 30 دقیقه تا 55 درجه و 14 دقیقه و 49 دقیقه و 12 دقیقه تا 77 درجه و 6 دقیقه و 15 دقیقه تا 77 درجه و 14 دقیقه است. منطقه دارای خاک لوم رسمی و خاک متشکل از چهار لایه نزوله‌پذیر در این جنگل 750 میلی‌متر در سال است (داراده کل منابع طبیعی استان گلستان- 1390). چوبکی در منطقه توسط یک اسکایر جرخ لاستیکی تیم‌نما 430 با ظرفیت خاتمه‌پذیری کامل گردیده‌باشد. این دستگاه وزنی حدود 10 تن و قدرت موتور 2200 دور در دقیقه می‌باشد. میانگین بار جابجایی روی مسیرهای چوبکی 3.57 متر مکعب است.
نشریه حفاظت زیست بوم گیاهان/ دوره ششم، شماره سیزدهم، پاییز و زمستان 1397

شکل 1- موقعیت منطقه موردطالعه

روش تحقیق

به منظور انجام این پژوهش، پس از پایان بهره‌برداری چوب در منطقه، یک مسیر چوبنشینی با شیب تقریباً یکنواخت (۲۰ درصد) با پیش از ۵۰ بار تردد در آن در نظر گرفته شد. با انتخاب نقطه‌ای تصادفی، اولین نمونه تعیین و سپس با فواصل ۱۰۰ متر در نمونه دیگر نیز تعیین شدند. در ۳ تکرار، میزان نفوذپذیری، کوئینگی، مقاومت خاک (مقاومت به فروری) و رطوبت خاک در قسمت‌های مرکز مسیر Junior et al., 2007; Han et al., 2009، را تحقیق و نشر کرد. همچنین در سری Han et al., 2007 و Han et al., 2009، به عنوان نمونه شاهد (۱۰۰-۱۵۰ متر از لبه مسیر به داخل) و خارج از مسیر به عنوان قسمت شاهد (۵۰-۱۰۰ متر از لبه مسیر به داخل) با استفاده از چهار نمونه تهیه و از خاک برداری شدند. فرمول‌سازی (داغستانی و همکاران، ۱۳۸۴) شکل ۲ و نمونه برداری خاک به منظور تعیین ون مخصوص ظاهره و رطوبت خاک با استفاده از سیلدوس (۱۹۸۶) و و در سه عمق ۱۰۰-۱۰۰۰ و Blake and Hartge، ۱۹۸۶) با استفاده از چهار نمونه برداری ۲۰ و ۳۰۰-۲۰۰ سانتی‌متری از سطح خاک و مقاومت به فروری با استفاده از پنتومتر (Agrotronix) و Excel ۲۰۱۰ در سه عمق ۱۰۰-۱۰۰۰ و ۲۰۰-۲۰۰ و ۳۰۰-۳۰۰ سانتی‌متری از سطح خاک اندازه‌گیری شد. اطلاعات حاصله از هر آزمایش به‌صورت باک اطلاعاتی در نرم‌افزار Excel ۲۰۱۰ ذخیره شد و روش نرم‌افزار SPSS بررسی شد (Giessen et al., 2۰۰۹).
نتایج

نتایج آنالیز واریانس تفاوت بین میزان نفوذیتی مناطق مختلف و نیز در طول زمان را تأیید می‌کند. نمودار (جدول 1) میانگین تغییرات نفوذیتی در حاکمیت طول زمان در نیم‌هزار و قسمت‌بندی در شکل 2 آمده است. همان‌طور که قابل انتظار است، میزان نفوذیتی با گذشت زمان کاهش یافته و سیستم‌های نزولی داشته، اما در تمامی زمان‌ها نفوذیتی در نیم‌هزار و نیک‌نیف در مقایسه با سایر نیم‌هزارها بوده است. تفاوت معنی‌دار قسمت وسط نیک‌نیف و در نیک‌نیف در قرار اول مشاهده می‌شود.
نتیجه گرفته شده یک تغییرات میزان متوسط نفوذی‌پری خاک در مسیر چوبکی و ناحیه شاهد (حروف مختلف نشان از تفاوت میانگین بین مناطق مختلف در هر زمان میانه)

بررسی متوسط میزان نفوذی‌پری در کل زمان مطالعه شده (5 دقیقه) در سه منطقه نشان داد که

(شکل 4)
علیرضا شهریاری و همکاران

شکل 2- میزان نفوذپذیری گل در 65 دقیقه در مسير چهارکن و ناحیه شاهد (حروف کوچک مختلف، نشان از تفاوت مونی) در بین مناطق مختلف دارد.

همچنین نتایج آنالیز واریانس نشان داد که اثر مناطق روی میزان کویبردیگی و مقاومت به فرووری خاک نیز مونی دارد (جدول 2). نتایج آزمون دانک نشان داد که کویبردیگی رشد جریان بیشتر از وسط مسير و کویبردیگی گرو دو تیمار بیشتر از شاهد بود (شکل 5). همچنین مقاومت به فرووری به ترتیب از شاهد به وسط و رد چرخ افزایش مونی دارد (شکل 6). همچنین در تمامی مناطق، بیشترین میزان کویبردیگی و مقاومت به فرووری در عمق اول (0-10 cm) در مقایسه با دو عمق دیگر موردتلاوه بود (شکل 5 و 6). همانطور که در شکل 4 مشخص است مقاومت به فر و روی در تیمار شاهد از تیمار با افزایش عمق در مقایسه با تیمارهای دیگر، از سرعت رشد افزایشی بیشتر برخوردار است. در واقع ناحیه شاهد دارای ضریب تغییرات بسیاری بیشتری در مقایسه با سایر مناطق بود (درصد ضریب تغییرات برای تیمار شاهد، وسط مسر و رد چرخ به ترتیب: 1/85، 1/67 و 1/33/85 بود).

جدول 1- آنالیز واریانس یکطرفه تأثیر مناطق روی مقاومت به فروری و کویبردیگی

<table>
<thead>
<tr>
<th>مقاومت به فروری</th>
<th>کویبردیگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مجموع درجه آزادی میانگین مربوطات</td>
<td>مجموع درجه آزادی میانگین مربوطات</td>
</tr>
<tr>
<td>2/518</td>
<td>2/478</td>
</tr>
<tr>
<td>25/159</td>
<td>25/159</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>منبع</th>
<th>مجموع درجه آزادی میانگین مربوطات</th>
<th>تیمار</th>
<th>خطا</th>
<th>کل</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/69</td>
<td>0/98</td>
<td>0/98</td>
<td>2/69</td>
<td></td>
</tr>
<tr>
<td>2/18</td>
<td>0/09</td>
<td>0/09</td>
<td>2/18</td>
<td></td>
</tr>
<tr>
<td>0/26</td>
<td>0/26</td>
<td>0/26</td>
<td>0/26</td>
<td></td>
</tr>
<tr>
<td>0/19</td>
<td>0/19</td>
<td>0/19</td>
<td>0/19</td>
<td></td>
</tr>
</tbody>
</table>

۲۳۹
نتایج بررسی اثر سه منطقه بر میزان رطوبت خاک در جدول ۳ ارده شده است. نتایج آزمون داگن نشان داد که میزان رطوبت خاک به ترتیب در ناحیه رده‌چرخ و بخش مسیر در تمامی عمق‌ها به صورت معنی‌داری بیشتر از تیمار شاهده بود (شکل ۷). همچنین در تمامی ناحیه‌ها، عمق اول (۰-۱۰) از میزان رطوبت بیشتری در مقایسه با عمق دوم (۱-۲) و سوم (۲-۳) برخوردار بود. در تمامی مناطق عمق دوم و سوم با یکدیگر تفاوت معنی‌داری نداشتند (شکل ۷).
جدول ۳- آنالیز ورایش یک طرفه اثر منطقه روی میزان رطوبت خاک

<table>
<thead>
<tr>
<th>منبع</th>
<th>مجموع مربعات</th>
<th>درجه آزادی</th>
<th>معنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیمار</td>
<td>۳۲۴۶۸/۹۹</td>
<td>۲</td>
<td></td>
</tr>
<tr>
<td>خطأ</td>
<td>۱۵۱/۵۰</td>
<td>۴۴</td>
<td></td>
</tr>
<tr>
<td>کل</td>
<td>۷۱۰/۶۶</td>
<td>۳۶</td>
<td></td>
</tr>
</tbody>
</table>

نتایج بررسی ارتباط نفوذپذیری - کوبیدگی و نفوذپذیری - مقاومت به فروری نشان داد که در هر دو مورد (شکل ۸)، رابطه خطي و معکوس و با ضریب تبیین ۰/۹۴، بین آن‌ها برقرار بوده و آنالیز رگرسیون نیز در سطح اطمینان یک درصد معنی‌دار است (به ترتیب برای مدل نفوذپذیری - کوبیدگی، F=۹۹/۲۳، p=۰/۰۰، F=۹۹/۲۳، p=۰/۰۰، F=۹۹/۲۳، p=۰/۰۰)
 nutshell حفاظت زیست بوم گیاهان/ دوره ششم، شماره سیزدهم، پاییز و زمستان ۱۳۹۷

شکل ۸- رابطه نفوذی-گیر و کوآدی-گیر و مقادیر به فروروز خاک

بحث و نتیجه‌گیری

همگونی فعالیتهای کشت کوآدی-گیر یا در معرض بارندگی قرار گرفتن خاک شد، موجب کاهش
نفوذی-گیر در حالی باشد که درنتیجه افزایش فرسایش می‌شود (Rab, ۲۰۰۴; Jourgholami et al., ۲۰۱۷). اگر دانه‌های خاک فاقد نیاز باشد، خیس شدن خاک ممکن است باعث تجزیه ذرات
بزرگتر به ذرات زیرتر شده که این ذرات ریز می‌تواند باعث مسدود شدن منافذ خاک و کاهش
نفوذی-گیر و هدایت هیدرولیکی شوند (Lister, ۱۹۹۹). مطالعات نشان داده‌اند که مسیرها و سطوحی
Sutherland et al., ۱۹۹۹) مانند شبکه جاده می‌تواند به‌عنوان مناطقی مهم برای تولید ورودی عمل کند (Rab,
۲۰۰۴; Jourgholami et al., ۲۰۱۷; Croke, ۲۰۱۱; Sutherland et al., ۲۰۰۰). پژوهش‌های متعددی نویس کاهش خاک
و در این مطالعه با استفاده از علوم و انجام و ارجعت نفاوت معنی‌دار میزان نفوذ آب در خاک در منطقه شرایط در مقایسه با دو منطقه دیگر،

می‌تواند تخلخل خاک و وجود فضاهای خالی پیشیگی منطقه شرایط به‌طور ماهیت دیگر باشد.

هنگامی که یک توده خاک فشرده با اړخاش می‌پاک، حجم اشغال شده توسط ذرات جامد خاک تغییر
نرم کنند، بکار در این حالت حجم حفره خالی موجود در خاک کاهش یافته و درنتیجه نفوذی-گیر

خاک نیز کاهش می‌یابد (رحمی، ۱۳۸۴). میزان نفوذی-گیر کل در ناحیه شرایط، وسط سیستم چوبکشی

۲۴۲
و محل رد چرخ به ترتیب برای ۲۷۲، ۲۷۳ و ۲۷۴ میلی‌متر بود. بنابراین نفوذپذیری وسط مسیر و رصدگی نسبت به ناحیه شاهد به ترتیب ۴۷/۸۵و ۷۵/۸ میلی-متر کاهش نشان دهد همچنین میزان نفوذپذیری اولیه در منطقه شاهد، وسط مسیر و رد چرخ به ترتیب ۲۷، ۲۹ و ۲۱ میلی‌متر می‌باشد که میزان نفوذپذیری وسط مسیر و رد چرخ به ترتیب ۴۲/۶ و ۴۲/۸ درصد نسبت به منطقه شاهد کاهش نشان می‌دهد. مقایسه گزارش‌های کاهش نفوذپذیری نسبت به شاهد، ۶۰/۳ برای مسیر چوبکش (Sutherland et al., ۲۰۰۶)، ۵۹-۹۰ شبکه رزیفان (Sunderland et al., ۱۹۸۵) و ۸۷/۲ برای ترافیک متوسط و ۸۷/۰ برای ترافیک سنگین جاده چوبکشی (Cullen et al., ۱۹۹۱) می‌باشد که قابل مقایسه با نتایج پژوهش حاضر است. این میانگین ارتفاع برآورد شده به ذکر اینکه که همواره مانند نوع حاکم، میزان رطوبت در زمان تردید و مانند مایه و سطح اتکای آنها در میزان تأثیر وارد به قانون هستند. پژوهشگران سپارسی کاهش نفوذپذیری و افزایش رواناب و فرسایش در مسیرهای چوبکشی و دیگر Fang et al., ۲۰۱۵; Etehadi Abari et al., ۲۰۱۷) مناطق با ترافیک بالا را گزارش کرده‌اند (۱۳۴۲). یکی از مهم‌ترین عوامل کاهش نفوذپذیری خاک، تراکم لایه سطحی خاک به علت تردد ماهیان‌ها چوبکشی و فشرده شدن خاک است (Daghastani و همکاران، ۱۳۴۸). همچنین نظریه هیدرولیکی و نگهداری آب به‌شدت در اثر کوپیدگی کاهش می‌یابد که محدودیت بر روی نتوان را جای داده‌های مربوط به نفوذپذیری لایه سطحی خاک بالا (محمدا کنگرایی، ۱۳۷۳) وجود ندارند، پس از اینکه در وسط مسیر، بایان تا نگران کاهش نفوذپذیری در این سطحی است که با توجه به نشان آنها در هدایت هیدرولیکی میزان تأثیر منفی سپارسی در کاهش نفوذپذیری خاکی ندارد.

برخی پژوهشگران مز ایجاد کوپیدگی خاک افزایش ۱۵/۱۵ برای چیلسم تازه‌سازی دانسته‌اند (Snider و Miller, ۱۹۸۵). در تمامی افق‌های وسط مسیر و رد چرخ، تغییرات نسبی دانسته‌بیش از ۱۵/۰۰ (حداقل ۲۸/۳ و حداقل ۴۲/۰) بود. بنابراین می‌توان از آن به کوپیدگی تعبیر کرد. افزایش وزن مخصوص ظاهری خاک (کوپیدگی) در اثر فعالیت‌های بچه‌های فرسایش، افزایش رواناب و سطحی و فرسایش در مسیرهای چوبکشی می‌شود که منطقه با نتایج این تحقیق (Cullen et al., ۱۹۹۱; Safari et al., ۲۰۱۷; Zemke, ۲۰۱۷) امتیاز داده شده است. دلیل اصلی تغییر نفوذپذیری خاک را می‌توان به تغییرات منفی در کوپیدگی خاک روی اتصال این چوبکشی نسبت به مسیر شاهد مرتبط دانست. اینت سه توجه به چالش موجود در ایران کوپیدگی سبب این شده به شکست کاهش پیدا کرده، به دلیل ترافیک بالا را، خود خود خود عامل منفی تلقی نمی‌شود، بلکه به دلیل منتفی شدن به کاهش نفوذپذیری و درنتیجه افزایش رواناب و فرسایش و تولید

۲۴۳
نشریه حفاظت زیست بوم گیاهان/ دوره ششم، شماره سیزدهم، پاییز و زمستان ۱۳۹۷

روست مشکل‌ساز است. در این پژوهش افراش ۵۷/۲۱٪ و ۶۶/۷۳٪ دانشمند در دارنگ و وسط مسیر نسبت به شاهد به ترتیب باعث کاهش ۴/۸۴٪ و ۵/۵۶٪، نفوذ‌پذیری نسبت به شاهد شده است که این تغییرات Ezzati et al., (2014)، (Rahb, ۲۰۱۴)، (Soli and Najafis., ۲۰۱۴) و سلی (۲۰۱۲) است، با این تفاوت که در این تحقیق به

اندازه‌گیری مستقیم نفوذ‌پذیری پرداخته شد. میک و همکاران ۴۱/۳۵ (Meek et al., ۱۹۹۲) نشان دادند که

با افراش دانشمند خاک از ۱/۱ به ۱/۸ مکاگرم بر مترمربع (حدود ۱۳٪)، میزان نفوذ‌پذیری کاهش می‌یابد که مطمئناً با تحقیق است و اختلاف کمتری نفوذ‌پذیری و دانسته در تحقیق حاضر می‌کند است ناشی از شرایط خاک، نوع وسیله بهره‌برداری، تعداد نزدک و عوامل دیگری باشد. اشاره و همکاران (۱۹۸۷، Wilshire et al., ۱۹۸۷) کاهش نفوذ‌پذیری به ارزی ۳۴/۵٪ افراش دانشمند را گزارش کردن. تنوع در نتایج پژوهش‌ها می‌کند است مربوط به نوع خاکی ناشی از بی‌بی‌بی‌بی (ماکورپورا) کمتری داشته و به‌نوع آن، کوبیدن تأثیر بیشتری بر آن ندارد (۲۰۱۱) (Reeves., ۲۰۱۱). میزان تغییرات مقدوم به فوروری در وسط و ریه چرب به ترتیب در افق اول ۴۲٪ و افق دوم ۴۹٪ به دو راستای مطالعات سه‌پر (۱۹۸۷) و (۱۹۹۴) همکاران (۱۹۹۴) و نوگنک و همکاران (۲۰۰۳) (Nguyen et al., ۲۰۰۳) است. گرین و سندرز (۱۹۸۰) و سپسی و واس (۱۹۸۵) افراش معنی‌دار مقدوم به فوروری جاده چوبکشی با بکس ماسه‌ای را تا عمق ۲۵ سانتی‌متر معنی‌دار است. افراش در ۱۲۰-۲۰۰۰ سادلند و همکاران (۲۰۰۳)، Sutherland et al., ۲۰۰۳) نیز ۱۸-۱۴۰۰٪ افراش مقدوم به فوروری به اراز طریق پذیری (۱۲) که مرحله با تحقیق حاضر است. در مرحله روتا، درصد تغییرات در وسط و ریه چرب به ترتیب در افق اول ۴۷٪ و افق دوم ۴۹٪ و ۵۱٪ و ۴۷٪ نسبت به مطلقه شاهد یک دلیل این تغییرات زیاد طبیعی نسبت به مطلقه شاهد را می‌توان به

پیشنهادها

با توجه به نتایج کسب‌شده به نظر می‌رسد که تزریق‌های غیرقابل اجتناب مصرف‌های جهانی موجب طراحی و در نظر گرفتن تهیه‌گری برای کاهش رواناب و تولیدی روابط و روابط ایجاد می‌شود. البته

با توجه داشت که در شیوه طراحی حاضر مرسی می‌باید توجه داشت که در شیوه طراحی دامنه مسیرهای این تزریق در روابطی ایجاد شده‌اند و قسمت‌های جنگل توجهی گردد. در برخی منابع از ایجاد شیارهای عرضی برای هدایت رواناب به داخل
جنگل به منظور کاهش فرسایش (Solgi and Najafi, 2014) ۲۰۱۵ به علت کاهش حفاظتی نامیده شده است. راهکار دیگر پیشنهادشده استفاده از مزار Mcnabb et al., ۲۰۰۱; Adekalu et al., ۲۰۰۴; Fernandez and MCG طبقات روی مسیرها (Vega, ۲۰۱۶) برای شکل دادن لایه حفاظتی است که به نوبه این مورد لازم است قبل از کاهش مواد بر رفتار مکانیکی خاک باعث افزایش بررسی و موردجوی قرار گیرد. در هر حال جایی از راهکار موردجویی در مورد ایجاد روی مسیری باید بهدنبال رواناب به داخل جنگل و جلوگیری از جریان یافتن روی مناسب برای ایجاد روی فرسایش تبدیل شود. از این جایی که اکنون ایجاد شیار و فرسایش ایبری در مسیرهای چوبکشی (فاقد روی روس) با طول و بلوتوپ زیاد افزایش می‌یابد، بنابراین پیشنهاد می‌شود از مسیرهای کوتاه با تعداد کمتر (نقطه‌های ناهنجار و همکاران، ۱۳۸۹) استفاده شود. شیب مسیرهای چوبکشی پیک از روی معرفی داری بر کوه‌گردی خاک تأثیر می‌گذارد که باعث شیب این مسیرها ناحیه‌های کمتر در نظر گرفته شود (جوی‌غلامی و مجنونیان، ۱۳۸۹) Carter et al., ۱۹۹۷). همچنین حدود کردن چوبکشی به زمان‌هایی با طول بیشتر کمتر خاک (Saarilahti, ۲۰۰۷; McNabb et al., ۲۰۰۱; Johnson and Han, ۲۰۰۷) که فشار باعث تایب (۲۰۰۲) کاهش فشار سطح نماس و درنتیجه کاهش در صورت اکنون جهت افزایش سطح نماس و درنتیجه کاهش (Eliasson, ۲۰۰۵; Ziesak, ۲۰۰۶) تشکل فشاری به خاک، مهارت رانندگی و ایرتان (۲۰۰۲; Heninger et al.) با منظور کاهش ترد و جابه‌جایی اسکیدر، استفاده از روش گردبینه که باعث کاهش ترد مانشین از راهکارهای دیگر حفاظت مسیرهای چوبکشی می‌باشد.

متابع
رافشی، ن. جگر، د. طبری، م. ۱۳۸۷. اثر گردبینه فیزیکی خاک پهنی روی کوبیدگی خاک مسیرهای اسکیدر در شبیه‌سازی مختلف، جنگل ایران، ۴۹(۱): ۲۳-۵۲.
رجهی، حسن. ۱۳۸۷. مکانیک خاک، انتشارات دانش و فن، ۶۲ صفحه.

۱۴۵

Restoration, 2005; Coeur d’Alene, ID. Proceedings RMRS-P-44; Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.

٨٤٢

نشریه حفاظت زیست بوم گیاهان/ دوره ششم، شماره سیزدهم، پاییز و زمستان ۱۳۹۷

۲۵۰