مطالعه اثر آلولوپاتی علف شور (Salsola kali) بر جوانان زراعی و رشد هتروتوپیک گیاهچه بخشي از گیاهان زراعی

مرتضی برمکی

دانشیار گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه محکم‌اردلی، اردبیل

تاریخ دریافت: 1396/11/13
تاریخ پذیرش: 1397/4/23

چکیده

بمنظور مطالعه اثر آلولوپاتی بقایای خشکشده ملغفشور گیاهچه تندید از گیاهان زراعی، مطالعهای در آزمایشگاه دانشگاه دانشگاه کشاورزی و منابع طبیعی دانشگاه محکم‌اردلی در سال 1394 صورت گرفت. اثر عمل آوری آلولوپاتی خشکشده آلولوپاتی در چهار گلگونه (صفر، یک، سه و پنج درصد) در یک طرح کاملاً تصادفی بر درصد و سرعت جوانانی، طول رشد گیاهان، طول ساقه گیاهان و وزن خشک گیاهچه گیاهان زراعی گزارش شد. نتایج نشان دادند که آلولوپاتی در غلفشور را ثابت کرد به‌طوری‌که تعداد خصوصیات جوانانی مورد آزمایش در گیاهان زراعی مورد مطالعه کاهش می‌یافت و نسبت به شاهد نشان دادند. در اثر وجود پدیده آلولوپاتی در بقایای ملغفشور خسارت اشاره در مراحل جوانانی و رشد یوله گیاهان زراعی مشاهده گردید که با کاهش درصد و سرعت جوانانی، طول رشد گیاهان و وزن خشک گیاهچه، ظرفیت تولیدی گیاهان زراعی افت پیدا می‌کند. در بین گیاهان زراعی بعنوان مورد نظر گیاهان آفت‌گردن، گندم و

*barmakis.morteza@gmail.com

135
شرایط حفاظت زیست جهان/دوزه شمش، شماره دوژدهم، بهار و تابستان ۱۳۹۷

فرت با استن کشتی در مرحله جوانی و رشد در بربر آلوده‌گاه قاچاق حاصل از آلودگی مواد شده و در اراضی الوه به این عامل هزار تا هزار باستند.

و این را که کیفیت آلوده‌گاه، جوانی، رشد، آلوده‌گاه، آلوده‌گاه و آلوده‌گاه زراعی مقدمه

برطبق تحقیق راپس (۱۹۸۴) (Rice, 1984) انیلولزی شکل هر گونه اثر مضر یا مفيد بسیار مستقیماً یا غیرمستقیماً است که توسط یک گیاه رود گیاهان دیگر از طریق تولید و ترکیبات شیمیایی در محیط زیست توسط یک گیاه گیر نمی‌باشد و عبارت ترکیبات شیمیایی در محیط زیست توسط یک گیاهان در حال رشد یا پیاده‌ای آن‌ها که ممکن است تشکیل شکل پیدا کرده و به‌طور مستقیم و یا غیرمستقیم بر رشد و گزینه‌ی افراد همان گونه‌ها یا گونه‌های دیگر تأثیر بگذارند (Seigler, 1986).

اثر دگرگرایی تعدادی از گیاهان زراعی و علف‌های هرز بر گیاهان زراعی دیگر که به‌طور همزمان با

Williams et al.; Swain et al., 2004;Monti et al., 2004; et al. (Kayode and Ayeni, 2009;2005)

اثر مضر مواد انیلولزیک ممکن است به‌صورت کاهش جزئی در رشد باشد یا از جوانی و رشد طبیعی گیاهان یک‌پنجه‌ای گیاهان دیگر (Inderjit et al., 1993). پتانسیل تولید مواد انیلولزیک در بعضی از گیاهان زراعی و علف‌های هرز گزارش شده است؛ مثلاً برگزاری (Burgos and Talbert, 2000) و تأثیرات (2000) گزارش کردن که تشریح ریشه‌ای که خود گزینه (Hoffman et al., 1996) گزارش کردن که

آنون‌نامه (Abutilon theophrasti) رشد و ریشه‌ی دم روبایی (Setaria viridis L.) گاوپرینه (Amaranthus hybridus) به‌وسیله بورگوم دانه‌ای کاهش یافته. حلمه و همکاران (۱۳۸۲) برجه که با افزایش غلظت عصاره حاصل از اندام هواپیمای آریپلکس، تأثیر باردارندگی آن یک بات‌در بر گروه‌های طبیعی قرار داده (Hegazy and Farrag, 2007). اثر انیلولزیک عصاره بر مورد مطالعه قرار دادند و مشاهده کردند که درصد جوانی گوزه فرگی تا ۵۱ درصد، چندین‌گونه تا ۹۰ درصد و شیرینی تا ۸۱ درصد در مقایسه با شاهد کاهش نشان داد. بایانی و همکاران (۱۳۹۰) عکس‌های متفاوتی در بربر عصاره چاودر گزارش

۱۳۶
کردان. بهطوری که درصد جوانزنی قدومه، خونی، وات، خردل و توشی و چرم با افزایش غلظت عصاره چاودر کاملاً بیافته اما بی‌قرار به‌کارهای این عصاره‌ها تأثیری نمی‌یابد.

در جنس‌ها و گونه‌های متعددی از اسفناجیان وجود ترکیبات آلولیپانیک گزارش شده‌است. برای مثال برخی از علوفه‌های هرز مهم این خونه‌های اثر یافته‌ای را دارد (نبیس و همکاران، ۱۳۸۸; رزا و همکاران، ۱۳۸۳; ۲۰۰۹; Bhawana et al., ۲۰۰۹). در این ناحیه سال‌ها با رابطه‌ای، گونه‌ای در نقاط مختلف از ایران و جهان و در میان خانواده اسفناجیان می‌باشد. این افراد در ناحیه‌های مختلف از این گیاهان استفاده می‌کنند. گونه و گونه‌ای در ناحیه‌های مختلف از این گیاهان استفاده می‌کنند.

Salsola kali (Buch. ex. Botsch.) Ulbr.؛ علوفه‌های هرز مهم این شور علل‌های زیادی از ایران و جهان و در میان خانواده اسفناجیان می‌باشد. این افراد در ناحیه‌های مختلف از این گیاهان استفاده می‌کنند. گونه و گونه‌ای در ناحیه‌های مختلف از این گیاهان استفاده می‌کنند.

Chenopodium album (L.) می‌باشد. برای افراد در ناحیه‌های مختلف از این گیاهان استفاده می‌کنند. گونه و گونه‌ای در ناحیه‌های مختلف از این گیاهان استفاده می‌کنند.
مواد و روش‌ها

این تحقیق به‌منظور بررسی اثر آلولپانیک علف‌شور جواننده و رشد گیاهچه‌گرندگی آفتابگردان، گندم، ماشک، گندم، چوب، ذرت و کلزا در سال ۱۳۹۲ در آزمایشگاه تکثیر‌زایی بذر دانشگاه کشاورزی و منابع طبیعی دانشگاه محققی اردبیلی و در شرایط آزمایش‌گاهی انجام شد. آزمایش در قالب طرح کامل‌کننده تصادفی در سه ترکیب اجرا گردید. تیمارهای آزمایشی عبارت از چهار گل‌شکل علف‌شور (صرف، بک، سه و یک تن درصد) بودند. به‌طور کامل آن در اواخر مرحله گل‌هایی از مزرعه تحقیقاتی دانشگاه کشاورزی دانشگاه محققی اردبیلی (بایان) جمع‌آوری شده و به‌صورت طبیعی در سایه، چهار شب کرده شدند. سپس این مواد گیاهی توسط آسیب‌آموز‌های یادگیری و عالی‌شناسی، تهیه شده و به‌روز مناسب اضافه شده و به‌مدت ۴۸ ساعت در شیکر قرار داده شد. سپس عصاره آبی با گل‌شکل پنج درصد از طریق تریلر کردن آن با گلدان صافی تهیه گردید (جان محمدی و همکاران، ۱۳۸۴). همیشه، گاز رشته‌های زمین‌شناسی با استفاده از برق‌باده و همکاران، ۱۳۸۴، چگی و همکاران، ۱۳۸۴). به‌طور کامل گفته شده و در کاف رشد بودند، خود از این می‌تواند باعث این نشانه‌های کاف چندانی و افزایش رشد و سرعت جواننده برای هر رقم، شمارش بذرها جواننده هر سرو ساعت مشخص انجام شد. این عمل تأمین کرده که نمایش جواننده شدن یا افزایش رشد که بطور رشته‌ای Germin نیوتن ادامه داشته است (Perry, 1991). هنگام شمارش، بذرها جواننده در گلدای شده و به‌طور طول رشته‌چی آنها و میلی‌متر یا بیشتر بود. برای محاسبه درصد و سرعت جواننده بذر از پنج گلدایی آزمایش لوپشود (Lodhi, 1979).
مرنیمی برکمکی

(سلطانی و مداوی، ۱۳۸۹) استفاده شد. برای بررسی رشد گیاهی ابتدا حوله کاغذی در داخل
تیمارهای مختلف از محلول عصاره تهیه شده از علفشور غوطه‌ور شد و پس از خارج شدن محلول
اضافی، سی بذر را در یک خط طولی با فاصله معین کشت شدند، بعضوی که از لبه بالایی
سانتی‌متر فاصله داشتند. سپس حوله کاغذی آغاز بیایтраز عصاره تیمار مورد نظر علفشور با همان ایجاد
روی بذرها قرار داده شد. حوله‌های کاغذی محتوی بذرها کشت‌شده پیچیده شدند و جهت جلوگیری
از تبخیر در داخل پاک‌پایی آگاهی داشتند. سپس حوله‌های کاغذی به‌طور عمومی در اتمک
رشد با دمای ۲۵ درجه سانتی‌گراد قرار داده شدند. پس از گذشت ۱۲ روز و اطمینان از رشد کافی
همه گیاهچه‌ها، حوله‌های کاغذی بارا شده و صفات مورد نظر از قبیل طول و وزن خشک رشد و
ساقچه اندام‌گیری شد (Hampton and Tekrony, 1995)، و برای تجزیه و تحلیل‌های آماری از
نرم‌افزار SAS استفاده شد. در صفات درصد جوانزی برای بونجه و کلاژ تبیین آرگ سینوسی و در
صفات طول ریشه، گل‌برگ و گردن ساقچه در مانک لذت بخش جدیر انجام شد. مقایسه
میانگین‌ها نیز با آزمون حداکثر اختلاف معنی‌دار (LSD) صورت گرفت.

نتایج و بحث

درصد جوانزی

نتایج حاصل از تجزیه واریانس (جدول ۱) نشان داد که علل عصاره علفشور در درصد جوانزی
بذرها گلبرگ، افتاگردان، گندم، ماسک، بونجه، جو و کلزا در سطح احتمال یک درصد و بر درصد
جوانزی بذر در مورد احتمال پنج درصد اثر نیاپسی از گیاهان است. مقایسه میانگین‌های
درصد جوانزی نشان داد (جدول ۲) که با افزایش میزان عصاره علفشور در درصد جوانزی
گیاهان زراعی مورد مطالعه کاهش محسوسی داشت، به‌طوری که بهترین جوانزی در تیمار شاهد
و کمترین آن در غلظت پنج درصد عصاره مشاهده گردید. در این غلظت میزان جوانزی گندم،
افتاگردان و درخت بی‌تینبی ۳/۳/۰/۳۴٪ و ۵/۰٪ و ۵/۲٪ درصد بوده و لی هیچ گونه جوانزی در گیاهان زراعی
گلبرگ، ماسک و بونجه مشاهده نگردید. این ترتیب با یافته‌های گردیدی (۱۳۸۷)، قدرتی و
همکاران (۱۳۸۷) در مورد میزان شناسایی علل عفونی بروز اری جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی هزیر بر جوانزی برخی گیاهان زراعی و مزمن متوسط
دارد. کیارستیمی (۱۳۸۲) (فعالیت آلولیازک بنج گونه عفونی H
نتایج تجربه‌های مختلف ع漶شور بر درصد جوان‌زیگرگان، فناوری: مانگک، جو، جو و فناوری

| گل‌نامه | کارگر | افزایش | کوئر | مواد | بسته‌بندی | دفت | df | تغییر | تغییر | غلظت | عملکرد | عملکرد | عملکرد | عملکرد | عملکرد |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| رحیم | شجاع | 3 | 4 |
| بیرنگ | بیرنگ | 3 | 4 |
| شجاع | شجاع | 3 | 4 |
| شجاع | شجاع | 3 | 4 |

انرژی طولانی‌مدت بیشتر، نمایشگر ع🈹شور بر درصد جوان‌زیگرگان، فناوری: مانگک، جو، جو و فناوری

در نهایت، مانگک های با خود مرتب شده، اختلاف امری معمولی‌داری در آزمون 2.5% با یکدیگر ندارند.

سرعت جوان‌زیگر

اثر سطوح مختلف عottesville عирующ بر سرعت جوان‌زیگری بذور گیاهان زراعی مورد استفاده معمولی‌دار بود (جدول 3)، مانگک کل برای سرعت جوان‌زیگری در نیازمندی در این زمینه، یک، سه و پنج درصد بهترین 243/04، 0/01 و 0/0704 در ساعت بود. با افراطیت غلظت عかもしれ ع inputValue از 140.
نیمار شاهد به یک سه و پنج درصد، سرعت جوان‌زنی بهترین به مقدار 0.6 و 91درصد کاهش نشان داد. بین گیاهان زراعی از نظر واقعی و سرعت جوان‌زنی به غلطه علم شرایط مختلف معنی‌داری وجود داشت. به طوری که، کمک با استفاده از سرعت جوان‌زنی در سطوح مختلف تیمارهای عصره علم شرایط، با توجه به سیستم‌های موجود در ساعت کمترین سرعت جوان‌زنی را داشتند (جدول 4). همانطوری که در جدول 4 مشاهده می‌شود، در غلظت پنج درصد عصره علم شرایط، فقط گیاهان گندم، افتاب‌گردان و ذرت قادر به جوان‌زنی بوده و سرعت جوان‌زنی این گیاهان بهترین 0.57 در ساعت بود. در ساعت بیشتر و گیاه مانک سرعت جوان‌زنی این گیاهان بهترین 0.53 در ساعت بود.

مرحله جوان‌زنی از مهم‌ترین مرحله گیاه است به طوری که این مرحله، دوم، استقرار گیاه و عملکرد نهایی گیاهان زراعی را تضمین می‌کند. جوان‌زنی بذر اهمیت فوق‌العاده‌ای در تعیین تراکم نهایی بونه در واحد سطح دارد و تراکم کافی بونه در واحد سطح زمین به‌دست می‌آید که به‌دنبال کاشته شده به‌طور کامل و با سرعت کافی جوان‌زنی بزنند. نوسانات جوان‌زنی که تحت تأثیر عوامل محیطی قرار می‌گیرد از نظر اکولوژیکی و از دیدگاه مدیریت زراعی از اهمیت خاصی برخوردار است. اثبات موجودیت عوامل محیطی و مکانیزم‌های درونی بذر، جوان‌زنی بذرها تحت شرایط خاص تعیین می‌کند (فرزانه و همکاران، 1386). کاهش سرعت جوان‌زنی بذر باعث می‌شود که گیاه زراعی فرصت کافی برای رشد و توسعه پایدار خود را نداید و در مراحل اولیه رشد نمی‌تواند به‌طور کامل به‌طور صریح در افزایش سبک به‌دنی و گروه به‌دنی و در جنبه مادی رشد از عقل هزرسپسیمی نسبت به و یا نگهداری و (Nilda و Talbert، 2000) بررسی تأثیر آلولپاتیک عصاره آبی برگ و گیاه جوان‌زنی و شرکت گیاهان کننده جایی از کاهش درصد جوان‌زنی، سرعت جوان‌زنی، طول زمان جوان‌زنی، دمای فرآیند و گیاهان زراعی از نظر با استفاده از آلولپاتیک عصاره به‌طور کامل ممکن است. تأثیر آلولپاتیک برخی عواملی هرچه بیشتر جوان‌زنی و رشد گیاهان به روشی که در ادامه از نظر حساسیت و تأثیر آلولپاتیک برخی عواملی را نشان می‌دهد (Omidpanah و همکاران، 2012)
جدول ۳- تجزیه واریانس اثر غلظت‌های مختلف عصاره علف‌شور بر سرعت جوانه‌زی گلرنگ، آفتابگردان، گندم، ماشک، پونه، جو، ذرت و کلزا

<table>
<thead>
<tr>
<th>کنکار غلظت</th>
<th>سطح df</th>
</tr>
</thead>
<tbody>
<tr>
<td>غلظت ۲</td>
<td>۵۹/۶۳</td>
</tr>
<tr>
<td>غلظت ۳</td>
<td>۳۹/۶۱</td>
</tr>
<tr>
<td>شدت</td>
<td>۳۹/۶۱</td>
</tr>
</tbody>
</table>

جدول ۴- مقایسه میانگین‌های اثر غلظت‌های مختلف عصاره علف‌شور بر سرعت جوانه‌زی (در سانت) برای گلرنگ

<table>
<thead>
<tr>
<th>کنکار غلظت</th>
<th>میانگین</th>
<th>مانک</th>
<th>صفر</th>
<th>جو</th>
<th>ذرت</th>
<th>کلزا</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>۲۳۴/۱۰</td>
<td>۲۳۸/۹۰</td>
<td>۲۴۴/۲۰</td>
<td>۲۴۶/۳۰</td>
<td>۲۴۳/۹۰</td>
<td>۲۴۶/۳۰</td>
</tr>
<tr>
<td>یک درصد</td>
<td>۲۳۴/۱۰</td>
<td>۲۳۸/۹۰</td>
<td>۲۴۴/۲۰</td>
<td>۲۴۶/۳۰</td>
<td>۲۴۳/۹۰</td>
<td>۲۴۶/۳۰</td>
</tr>
<tr>
<td>سه درصد</td>
<td>۲۳۴/۱۰</td>
<td>۲۳۸/۹۰</td>
<td>۲۴۴/۲۰</td>
<td>۲۴۶/۳۰</td>
<td>۲۴۳/۹۰</td>
<td>۲۴۶/۳۰</td>
</tr>
<tr>
<td>پنج درصد</td>
<td>۲۳۴/۱۰</td>
<td>۲۳۸/۹۰</td>
<td>۲۴۴/۲۰</td>
<td>۲۴۶/۳۰</td>
<td>۲۴۳/۹۰</td>
<td>۲۴۶/۳۰</td>
</tr>
<tr>
<td>۱۲ درصد</td>
<td>۲۳۴/۱۰</td>
<td>۲۳۸/۹۰</td>
<td>۲۴۴/۲۰</td>
<td>۲۴۶/۳۰</td>
<td>۲۴۳/۹۰</td>
<td>۲۴۶/۳۰</td>
</tr>
</tbody>
</table>

در هر ساتون، میانگین‌های با حروف مشترک، اختلاف آماری معناداری در آزمون LSD ۵% با یکدیگر ندارند.

طول ریشه‌چه

نتایج تجزیه واریانس برای طول ریشه‌چه (جدول ۵) نشان داد که غلظت‌های مختلف عصاره علف‌شور بر رشد ریشه‌چه‌های گونه‌های زراعی مورد مطالعه به‌جز فرض اثر معنادار دارد. مقایسه میانگین‌ها (جدول ۵) نشان می‌دهد که با افزایش غلظت عصاره علف‌شور از طول ریشه‌چه کاسته شد.

در غلظت پنج درصد در گیاه‌های گلرنگ، گندم، ماشک، پونه، جو و کلزا، طول ریشه‌چه حتی به صفر رسید. در این غلظت عصاره مقدار کاهش طول ریشه‌چه به شاهد در گیاهان زراعی آفتابگردان و گندم به‌ترتیب ۹۴/۶ و ۹۴/۳ درصد بود. تأثیر متفاوت عصاره علف‌شور بر روی طول ریشه‌چه در گیاهان گلرنگ، ماشک و کلزا نیز چشمگیر بود. لودهی (۱۹۷۹) در عنوان داشته است که...
این نتایج کافی و مفیدی هستند که به ادامه علائم با غلظت 2000/01 افزوده شد و رشته تریچه را کامل محدود کند. بنظر می‌رسد این امر با دلیل اثر بیرون‌اندیشی مواد آلولوپانیک بر تقسیم سلولی در کلاه‌های ریشه باشد. به‌طوری‌که گزارش شده است آلولوپانیک‌ها میزان اکسیژن القا کننده‌ی رشد ریشه‌ها را کاهش می‌دهند (Ben Hammouda et al., 2001). ممکن است یکی از مفسدات فیزیولوژیک آلولوپانیک باشد (Vasilakoglou et al., 2005). در تحقیقات (مقدماتی و پیش‌بینی‌های) و با بررسی موثریت آلولوپانیک‌ها بر روی دریافت‌های فیزیولوژیک، واقعیت و قابلیت آلولوپانیک‌های پنج به دقت تأثیر آلولوپانیک بر مصرف مواد اغذیایی و قیاف قرار گرفت و اثرات منفی قیاف روی رشد ریشه‌های محصولات بالا شده بیشتر از اورباسول بوده و همچنین پنبه بیشتر از دریافت تأثیر بیان‌رالگی علف‌های هرز مورد آزمایش واقع شده.

جدول 5- تجزیه و تحلیل عبارت غلظتها متفاوت مصرف بر طول ریشه‌چه گالرگ، افتکارگران، گندم، گندم

<table>
<thead>
<tr>
<th>تغییر</th>
<th>df</th>
<th>سابع</th>
<th>میانگین مربوط</th>
</tr>
</thead>
<tbody>
<tr>
<td>غلظت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>عصاره</td>
<td>3</td>
<td>326</td>
<td></td>
</tr>
<tr>
<td>خطا</td>
<td>8</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>C.V.</td>
<td>8</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

و 8/18، به‌ترتیب معنی‌دار در سطح احتمال بینچ و یک درصد و غیر معنی‌دار
جدول ۶- مقایسه موادگی‌های اثر غلظت‌های مختلف عصاره علف‌شور بر طول زندگی گلرگین، اعتیاف‌درا. گندم، ماشه، پونجه، چرب و کلزا (سانتی‌متر)

<table>
<thead>
<tr>
<th>غلظت عصاره</th>
<th>گلرگین اعتیاف‌درا. گندم</th>
<th>ماشه پونجه چرب کلزا</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>۷/۸</td>
<td>۷/۸</td>
</tr>
<tr>
<td>یک درصد</td>
<td>۷/۶۸</td>
<td>۷/۶۸</td>
</tr>
<tr>
<td>سه درصد</td>
<td>۷/۵۶</td>
<td>۷/۵۶</td>
</tr>
</tbody>
</table>

در هر ستون، میانگین‌های با حروف مشترک، اختلاف آماری معناداری در آزمون LSD ۰/۵\% با یکدیگر ندارند.

طول ساق‌چه

نتایج حاصل از تجزیه و ارایش نشان داد (جدول ۷) که عصاره‌های علف‌شور بر رشد ساق‌چه در گیاهان زراعی گلرگین، اعتیاف‌درا. گندم، ماشه، پونجه، چرب و کلزا تأثیر معنادار دارد. مقایسه میانگین صفات (جدول ۸) نشان داد که در گلرگین، اعتیاف‌درا. گندم، ماشه، پونجه، چرب و کلزا رشد ساق‌چه با افزایش غلظت عصاره ابی علف‌شور کاهش یافته و به‌طوری که در پونجه، ماشه، گلرگین، چرب و کلزا در غلظت یک درصد عصاره، هیچ رشدی در ساق‌چه صورت نیز نرفت. طول ساق‌چه در گیاهان زراعی گلرگین و اعتیاف‌درا. نسبت به عصاره ابی علف‌شور از بیشترین حساسیت برخوردار بود. این در حالت است که طول ساق‌چه در گیاه ذرت نسبت به عصاره ابی علف‌شور حساسیت کم‌تری داشت به‌طوری که اثرات عصاره ابی علف‌شور بر روی این صفت معنادار نبود. توماسز و ثینمان (۱۹۶۶) عنوان کرده‌اند که بسیاری از مواد لیپوسامیاتی اثر تحريكی کندنده هورمون‌های رشد ایندولاستیک اسید و جیپرین را کاهش می‌دهد که به کاهش رشد اندازه‌های کلیول می‌انجامد. بابایی و همکاران (۱۳۹۰) با بررسی تأثیر آلولپتیک عصاره جوابدار روی رشد گیاهچه جند کننده علف‌های گر زایش کردن که با افزایش غلظت عصاره اندازه‌های چاودار، طول ساق‌چه‌های کازی بیش‌تر، مکانیسم‌های متفاوت جنب از ریشه‌ها و

۱۴۴
سلول سطحی و مسیرهای متاپولیکی و جایگاه‌های اثر منفی در سطح حساسیت گیاهان به مواد آلوده‌های یکسان باشد.

جدول 7- تجزیه و تحلیل آزمون فاونر بر میانگین مقدار عصاره حمایتی و مقدار عصاره حمایتی بر طول ساقه‌های گلرگ، گندم و ماشک

<table>
<thead>
<tr>
<th>مقدار عصاره</th>
<th>گلرگ</th>
<th>گندم</th>
<th>ماشک</th>
<th>جو</th>
<th>شکر</th>
<th>کلراز</th>
<th>میانگین مربعات</th>
</tr>
</thead>
<tbody>
<tr>
<td>عصاره</td>
<td>3/67</td>
<td>3/43</td>
<td>5/10</td>
<td>1/86</td>
<td>1/16</td>
<td>2/84</td>
<td>1/108</td>
</tr>
<tr>
<td>شکر</td>
<td>1/36</td>
<td>1/46</td>
<td>1/14</td>
<td>1/31</td>
<td>1/23</td>
<td>1/62</td>
<td>3/66</td>
</tr>
<tr>
<td>کلراز</td>
<td>1/61</td>
<td>1/24</td>
<td>1/42</td>
<td>1/28</td>
<td>1/76</td>
<td>1/86</td>
<td>1/34</td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccccccccc}
\text{شاده} & 3/62 & 1/34 & 1/24 & 1/42 & 1/28 & 1/76 & 1/86 & 1/34 & 3/66 \\
\end{array}
\]

در هر سنون، میانگین‌های با حروف مشترک، اختلاف آماری معنی‌داری در آزمون LSD با 5% یکدیگر ندارند.

وزن خشک گیاهچه

نتایج تجزیه‌های واریانس مقدار وزن خشک گیاهچه (جدول 9) نشان داد که عصاره حمایتی بر وزن خشک گیاهچه‌های همه گیاهان زراعی مورد مطالعه به‌طور مداوم و گندم در سطح یک درصد اثر معنی‌داری گذاشت، اما این تأثیر در گندم در سطح احتمال یک درصد معنی‌دار بود.
تشریح دقایق زیست یوم گیاهان/ دوره نشست، شماره دوازدهم، بهار و تابستان 1397

مقایسه‌ی میانگین‌ها (جدول 10) نشان داد که با افزایش غلتظ عصاره، بارت وزن گیاهان گرزید، به‌طوری که وزن خشک گیاه‌چه‌های گرانگ، ماسک، پنجه، جو و کلزا در غلتظ پنج درصد عصاره غلفشور، در غلتظ پنج درصد عصاره غلفشور، وزن خشک گیاه‌چه در گیاهان زراعی

افتاب‌گردان، گندم و دفت پرتیزی 2028/0/0 و ۶۶/۰/۰ گرم به‌دست آمد که نسبت به شاهد به‌طور

ترتب 12، 4 و 7 برای کمتر بود. بنیاد و همکاران (1388) گزارش کردند که درصد سبزشدن

گیاه مرز توسط عصاره ای اندام‌های سلمان‌مرد و اندام کامل توق کاهش می‌یابد. عصاره‌های این

دو عفون‌‌های نگاه به تأثیر معنی‌داری بر روی صفات مورفولوژیکی مرزه داشته‌ند؛ به‌طوری که باعث کاهش ارتفاع

بوته، تعداد برق در بوته و وزن خشک اندام‌های و رشته گیاه مرز گردیدند. وو و همکاران (1397) نیز گزارش کردند که مواد آلولشیمی‌ای باعث کاهش رشد اندام‌های مختلف گیاهان از

جامه شاخه و برق و کاهش ارتفاع بوته می‌شود. رضایی و پاریا (2009) گزارش کردند عصاره ریشه و اندام‌های سلمان‌مرد باعث کاهش ارتفاع بوته و وزن خشک ریشه و اندام‌های گرانگ می‌شود. مالکوتسفای (1988 Mallik and Tesfai) گزارش کردند؛ اثرات الگوهایی

پنای بسیارتره سبب کاهش تعداد گره ریشه‌ها در سویا می‌گردد که به کاهش ظرفیت تثبیت

پیوستگی نیتروژن در این گیاه مبخر شده و رشد آن را کاهش می‌دهد.

جدول ۹-نتیجه تجزیه و تحلیل اثر غلتظ‌های مختلف عصاره غلفشور بر وزن خشک گیاه‌چه در گرانگ، افتاب‌گردان.

<table>
<thead>
<tr>
<th>گیاه</th>
<th>ماسک</th>
<th>پنجه</th>
<th>جو</th>
<th>فرت</th>
<th>کلرا</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>تغییر</td>
<td>همین‌مربوط</td>
<td>غلتظ</td>
<td>عصاره</td>
<td>خطا</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

* 20/4 به‌متریپ معنی‌دار در سطح احتمال یک و پنج درصد
جدول 10- مقایسه میانگین نتایج حاصل از اثر فلسطه‌های مختلف علی‌شور در زرد کلزا (گرم)

<table>
<thead>
<tr>
<th>جیاه</th>
<th>کلامک</th>
<th>افتاکارگان</th>
<th>گندم</th>
<th>ماشک</th>
<th>یونجه</th>
<th>زراعی</th>
<th>کلزا</th>
<th>جو</th>
<th>یونجه</th>
<th>گندم</th>
<th>کلامک</th>
<th>افتاکارگان</th>
<th>گندم</th>
<th>ماشک</th>
<th>یونجه</th>
<th>زراعی</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>٧۴١/١٦</td>
</tr>
<tr>
<td>یک درصد</td>
<td>٧۴١/١٦</td>
</tr>
<tr>
<td>سه درصد</td>
<td>٧۴١/١٦</td>
</tr>
<tr>
<td>پنج درصد</td>
<td>٧۴١/١٦</td>
</tr>
</tbody>
</table>

در هر سال، میانگین‌های با جریان مشترک، اختلاف آماری معنی‌داری در آزمون LSD ۵% با یکدیگر ندارد.

نتیجه گیری کلی

وجود پدیده‌ای آلولپاتی در بقاگاه‌های نارنجی و تجزیه شده علی‌شور متجر به ایجاد خسارات آشکار در مراحل جوانزنی و رشد گیاهان زراعی متعددی تئوری گلمنگر، افتاکارگان، گندم، ماشک، یونجه، جو، زیینه، کلزا و کلمدرد، یک کاهش درصد و سرعت جوانزنی و کاهش رشد ریشه و ساقه، ظرفیت تولید انرژی را کاهش می‌دهد. از پان‌گیاهان زراعی مورد مطالعه، گیاهان افتاکارگان، گندم و کلزا و اسید کمتری را در مرحله جوانزنی و رشد در مواجهه با آلولپاتک آلولپاتک های تولید شده از علی‌شور متوجه شده و در اراضی آلولپاتک به این علت هر قابل توصیه نیستند. جمع آوری و سوزاندن بیکر علی‌شور می‌تواند به کاهش آثار منفی آلولپاتک به وجود آمده توسط آن در مزارع موجب شود.

منابع

افراش، ف.، زینیلی، ا.، فرمان‌نیا، س.، ۱۳۸۰. اثر آلولپاتک درمانی (Artemisia annua) بر ظهور (81). اثر آلولپاتک درمانی (Artemisia annua) بر ظهور (81).

۱۳۸۰.۱۳۸۰.۱۳۸۰.۱۳۸۰.۱۳۸۰.
نشریه حفاظت زیست بوم گیاهان/دوره ششم، شماره دوازدهم، بهار و تابستان 1397

بابایی، س. علم‌لی، ح. تختی، ج. دیباغی، م. فرخی، ز. 1390. تأثیر آلولپاتیک عصاره چاودر روی مولفه‌های جوانه‌زای بذر و رشد گیاهی چند گونه علف هرز. علوم گیاهان زراعی ایران، 3: 475-483.

نبیاس، ا.؛ زهرات سلماسی، س. رایعی، ی. اهری‌زاد، س. نصرالله‌زاد، ص. 1388. اثرات آلولپاتیک (Xanthium) عصاره آبی اندامهای مختلف سلماته‌ی (Chenopodium album L.) بر سپز شدن، رشد و نمو و میزان اساس گیاه دارویی مزاره Satureja chrysostoma L.) در شرایط مختلف.

دانشگاه تبریز، دانشکده علوم جهانی، بخش کشاورزی، 1388: 131-142.

جان محمدی، م. آ. ابراهیمی، م. ت. راشدی‌نظامی، م. محمدی، ج. کازرونی، ا. مجد، ر. 1384. اثر Vigna radiata بر جوانه‌زایی و رشد اولیه ماش (Acroptilon repens L.) عصاره آبی نمله (Xanthium) بر جوانه‌زایی و رشد اولیه ماش (Acroptilon repens L.) مقالات اولین همایش ملی حیوانات، 29 و 30 آبان، پژوهشگاه علوم گیاهی دانشگاه فردوسی مشهد، 1398: 598-604.

چیتا، م. ع. خان محمدی، ج. ا. خدادادی، ش. 1391. بررسی تأثیر قطع برخی از محلولهای ترکیبی در مراحل تکامل دانه‌های عمیق‌کردن و کیفیت جوانه‌زایی بذر گندم، پژوهش و سازندگی، 48(1): 131-147.

حنطه، ع. ضرغمی، ن. جعفری، م. میرزابافی، ح. زارعی‌کوک، م. ع. 1382. بررسی آلولپاتیک آریپلکس کانسنی بر جوانه‌زایی بذر درمده دشتی منابع طبیعی ایران، پژوهش و سازندگی 48(3): 131-149.

Atriplex تختی، م.؛ هم‌اندیسی، ف. 1387. اثر آلولپاتیک عصاره برق و میوه Dodeci، س. جف‌سرداری، م. هندوکن، م. طولی، ع. 1384. اثر آلولپاتیک عصاره برق و میوه Salsola rigid (Xanthium) بر خصوصیات جوانه‌زایی بذر Salsola canescens.

دانشگاه تبریز، دانشکده علوم جهانی، بخش کشاورزی، 1388: 588 صفحه.

سلطانی، ا. مجد. و. 1389. بررسی ارتباط کاربردی ساده برای آموزش و پژوهش در رزانته انتشارات انجمن علمی کشاورزی بوم‌شناختی ایران دانشگاه شهید بهشتی، چاپ اول، 80 صفحه.
آن. ۱۳۸۲. تأثیر الهوایی عصاره آبی اندام اثر مختلف خرید و وسیعی (Sinapis arvensis L.) عصاره. ۲۰۰۰. مسعودی خراسانی. ف. هداد‌چی، ع. بارانی، ن. بانیان اول. اثر الهوایی عصاره آبی اندام (Ameranthus retroflexus L.) عصاره کناره و وسیعی. علوم کشاورزی و منابع طبیعی. ۵: ۸۸-۸۶.

یزدانی. ا. ۱۳۸۲. بررسی اثر الهوایی عصاره هماهنگ و رشته عکس‌شور بر عصاره‌های گندم. پایان نامه کارشناسی ارشد. دانشگاه آزاد اسلامی، واحد مشهد.

Roohi, A., Tajbakhsh, M., Saeidi, M.R., Nikzad, P. 2009. Study the allelopathic effects of walnut (*Juglans regia*) water leaf extract on germination characteris-

نشریه حفاظت زیست بوم گیاهان/ دوره هشتم، شماره دوازدهم، بهار و تابستان ۱۳۹۷

۱۵۲