تأثیر برخی عوامل بوم شناسی در انتشار پوشه گیاهی واحد فیزیونومی علف بونه زار در
کرادیان افکاری آبادی-شابل (شمال سیلان)

اردوان قربانی ۱، فریدا نظری عشتران ۲، علی اصغری ۳، فرزندان عظیمی معلم ۴، مريم مولایی ۵

دنده ایرانی گروه منابع طبیعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل

دانش اموزشی کارشناسی ارشد مربیان، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل

دانش ایرانی گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل

کیشکه

این تحقیق با هدف بررسی تأثیر عوامل بوم‌شناسی در انتشار و تغییرات پوشه گیاهی و سطحی در دامنه‌های شمالی سیلان (روش‌های افرادی فکرآمیز-شابل) در سطح واحد روستای علف بونه‌زار انجام شد. پس از بررسی‌های میدانی و با توجه به جاده‌های دسترسی‌پذیر، منابع در سطح ۱۵۰۰-۲۰۰۰ متر از سطح دریا در طول ۵ تا ۷ تاریک و در کرانه‌ها ۱۰ پلاکی در ۲۵ متر برکناری شدند. در هر پلاک بررسی ترس یا غربت شده در دامنه‌های جنگلی و پارک‌های آن در ارتفاع‌های اندارکیزی شد. از روش‌هایی به موفقیت‌های اصلی (CCA) و آنالیز‌های ملایمی برای گروه (PCA) بدنی میدانی دربررسی و بررسی‌های کشاورزی در انتشار گونه‌های گیاهی استفاده شد. نتایج بودند که درصد اندارکیزی در زمستان بیش از ۸۵ درصد از کنشگران می‌باشد. درصد اندارکیزی در زمستان بیش از ۸۵ درصد از کنشگران می‌باشد.

ارداوانیا @yahoo.com

نویسنده مسئول: ٢١٥
Particulate Organic Matter

(Vertas and CCA Villers-Ruiz et al., 2003)

Zhang and Dong, 2010

Vetaas and and

Gerytnes, 2002

Sheeninitial/sheeninitial /yehmedial/yehmedial/yehmedial/yehmedial/behfinal/behfinal

Zhang and Dong, 2010

Vellaas and CCA Villers-Ruiz et al., 2003

Particulate Organic Matter

McKee

Zhang and Dong, 2010

Vellaas and CCA Villers-Ruiz et al., 2003

Particulate Organic Matter

Notes:

Sheeninitial/sheeninitial /yehmedial/yehmedial/yehmedial/yehmedial/behfinal/behfinal

Zhang and Dong, 2010

Vellaas and CCA Villers-Ruiz et al., 2003

Particulate Organic Matter

Notes:

Sheeninitial/sheeninitial /yehmedial/yehmedial/yehmedial/yehmedial/behfinal/behfinal

Zhang and Dong, 2010

Vellaas and CCA Villers-Ruiz et al., 2003

Particulate Organic Matter

Notes:
روش‌های تجزیه به مؤلفه‌های اصلی ۳ و آنالیز تطبیقی متغیرین ۴، رابطه بین بویش گیاهی و عوامل محیطی را در منطقه لاکوس مکزیک بررسی کردن و نتیجه گرفتن عوامل محیطی شال و ارتفاع، بارندگی، درجه حرارت و خصوصیات زمین در پراکنش نیپهاه گیاهی مؤثر هستند، در مثال دیگر، کاترو و همکاران (۲۰۰۳)، در بررسی مراتع گوجه‌فرنگی آراوین بر استفاده از روش Canonical Correspondence Analysis (CCA) نشان دادند که ارتفاع از سطح دریا مهم‌ترین عامل تعیین‌کننده ترکیب گیاهی در این منطقه می‌باشد. طی مطالعه‌های سیمبالو و لوسوسو (۲۰۰۹) تأثیر عوامل محیطی بر ترکیب بویش گیاهی علوفه‌های هرز اراضی زراعی در بخش شمال شرقی جمهوری چک را بررسی و نتیجه گرفتند که تمامی متغیرهای محیطی شال و ارتفاع از سطح دریا، بارندگی سالانه، متوسط درجه حرارت سالانه، نوع حاک و نوع محصول اثر معنی‌داری بر ترکیب گوجه‌فرنگی دارد. عبدالحمید و همکاران (۲۰۱۴) (Abd El-Ghaniet al., 2014) توزیع فضایی و خصوصیات حاک روش‌هایی هفت گونه گیاهی گوشته کشور مصر را بررسی و نتیجه‌گیری کردند که دواده عامل حاک مانند هدایت الکتریکی، اسیدیت و غیره انتشار گونه‌ها را کنترل می‌کنند. در پژوهشی دیگر، تیپ بور و همکاران (Cimalova and Lososova, 2009) نشان دادند که با افزایش ارتفاع از سطح دریا، گوجه‌فرنگی بالشکل مانند Acantholimon Cimalova and Lososova, 2009) براکش بریتی دارن. در مطالعه‌ای که جهت تعیین پروکسی بیشتری دارند Onobrychis cornuta و pterostegium مؤولت این عوامل صمیمی بر پراکنش نیپهاه رویشی در مراتع کیچک می‌باشد توسط میردباسی و همکاران (۱۳۹۱) (Cimalova and Lososova, 2009) نشان داد که عوامل جهت گرفته‌ای به طور صمیمی و هدایت الکتریکی استفاده‌های بهتری به خصوص در مراتع کیچک می‌باشد توسط میردباسی و همکاران (۱۳۹۱) (Cimalova and Lososova, 2009) نشان داد که عوامل جهت گرفته‌ای به طور صمیمی و هدایت الکتریکی استفاده‌های بهتری به خصوص در مراتع کیچک می‌باشد. در پژوهشی دیگر، تیپ بور و همکاران (Cimalova and Lososova, 2009) نشان دادند که با افزایش ارتفاع از سطح دریا، گوجه‌فرنگی بالشکل مانند Acantholimon Cimalova and Lososova, 2009) براکش بریتی دارن. در مطالعه‌ای که جهت تعیین پروکسی بیشتری دارند Onobrychis cornuta و pterostegium مؤولت این عوامل صمیمی بر پراکنش نیپهاه رویشی در مراتع کیچک می‌باشد توسط میردباسی و همکاران (۱۳۹۱) (Cimalova and Lososova, 2009) نشان داد که عوامل جهت گرفته‌ای به طور صمیمی و هدایت الکتریکی استفاده‌های بهتری به خصوص در مراتع کیچک می‌باشد. در پژوهشی دیگر، تیپ بور و همکاران (Cimalova and Lososova, 2009) نشان دادند که با افزایش ارتفاع از سطح دریا، گوجه‌فرنگی بالشکل مانند Acantholimon Cimalova and Lososova, 2009) براکش بریتی دارن. در مطالعه‌ای که جهت تعیین پروکسی بیشتری دارند Onobrychis cornuta و pterostegium مؤولت این عوامل صمیمی بر پراکنش نیپهاه رویشی در مراتع کیچک می‌باشد توسط میردباسی و همکاران (۱۳۹۱) (Cimalova and Lososova, 2009) نشان داد که عوامل جهت گرفته‌ای به طور صمیمی و هدایت الکتریکی استفاده‌های بهتری به خصوص در مراتع کیچک می‌باشد. در پژوهشی دیگر، تیپ بور و همکاران (Cimalova and Lososova, 2009) نشان دادند که با افزایش ارتفاع از سطح دریا، گوجه‌فرنگی بالشکل مانند Acantholimon Cimalova and Lososova, 2009) براکش بریتی دارن. در مطالعه‌ای که جهت تعیین پروکسی بیشتری دارند Onobrychis cornuta و pterostegium مؤولت این عوامل صمیمی بر پراکنش نیپهاه رویشی در مراتع کیچک می‌باشد توسط میردباسی و همکاران (۱۳۹۱) (Cimalova and Lososova, 2009) نشان داد که عوامل جهت گرفته‌ای به طور صمیمی و هدایت الکتریکی استفاده‌های بهتری به خصوص در مراتع کیچک می‌باشد. در پژوهشی دیگر، تیپ بور و همکاران (Cimalova and Lososova, 2009) نشان دادند که با افزایش ارتفاع از سطح دریا، گوجه‌فرنگی بالشکل مانند Acantholimon Cimalova and Lososova, 2009) براکش بریتی دارن. در مطالعه‌ای که جهت تعیین پروکسی بیشتری دارند Onobrychis cornuta و pterostegium مؤولت این عوامل صمیمی بر پراکنش نیپهاه رویشی در مراتع کیچک می‌باشد توسط میردباسی و همکاران (۱۳۹۱) (Cimalova and Lososova, 2009) نشان داد که عوامل جهت گرفته‌ای به طور صمیمی و هدایت الکتریکی استفاده‌های بهتری به خصوص در مراتع کیچک می‌باشد. در پژوهشی دیگر، تیپ بور و همکاران (Cimalova and Lososova, 2009) نشان دادند که با افزایش ارتفاع از سطح دریا، گوجه‌فرنگی بالشکل مانند Acantholimon Cimalova and Lososova, 2009) براکش بریتی دارن. در مطالعه‌ای که جهت تعیین پروکسی بیشتری دارند Onobrychis cornuta و pterostegium مؤولت این عوامل صمیمی بر پراکنش نیپهاه رویشی در مراتع کیچک می‌باشد توسط میردباسی و Hمکاران (۲۰۰۳)، از جنوب دگر، مراتع سیلان، از مهم‌ترین مراتع کشور، به وسیله بیش از دو دهه شناسی مانند جوانه‌های مرغوب مردی، دخیل رضا، افتاده‌ای، تولید علفه، نقش آن در دامداری، زنبورداری و غیره حائز اهمیت است (فرنگی، و اینگی، ۱۳۹۳؛ فرنگی و همکاران، ۱۳۹۶) هر چند که در بخش جنوب شرقی سیلان مطالعات قابل توجهی در ارتباط با شناخت بویش

۳Principal Component Analysis (PCA)
۴Canonical Correspondence Analysis (CCA)
تشریح حفاظت زیست بوم گیاهان/ دوره ششم. شهره دوژدهم. بهتر و ناویستان

گیاهی و عوامل موثر در انتشار گیاهان انجام شده است (نظری مثل، قربانی و اصغری، 1396)، زراعت، خصوصاً گیاهان، (1393؛ قربانی و همکاران. 1394) ولی مطالعات اندکی در ارتباط با بوشک گیاهی مراجع در بخش شمالی سیستان انجام شده است (نظری بنیانگر و همکاران، 1394). با برنی سعبه در ارتباط با تاثیر عوامل بومشناختی در انتشار گونه‌های گیاهی در این منطقه تحقیقات انجام نشده است. بنابراین، ضرورت دارد تحقیقات کاربردی به منظور کسب شناخت کافی از ترکیب، تنوء و عوامل اکولوژیکی مؤثر در تغییر ترکیب، تنوء و انتشار گیاهان در این منطقه مختلف به دو بخش الف بررسی ترکیب و تنوء گونه‌بندی در گردایان ارتفاعی شمال سیستان بوده، انجام و نتایج آن منتشر شده است (نظری عنبران و همکاران. 1394). ب) در ادامه تحقیق فوق، این مقاله با هدف بررسی تاثیر عوامل اکولوژیکی انتخاب شده در تغییر ساختار و انتشار گونه‌بندی مراتب دامنه شمالی سیستان در سطح واحد رویشی علف بوته‌زار انجام گرفته است.

مواد و روش‌ها
منطقه مورد مطالعه
پروپیول ارتفاعی فرآباد-شمالی با شهران می‌باشد، در استان اردبیل در فاصله ۵۵ کیلومتری غرب شهر اردبیل در دامنه‌های شمالی سیستان قرار دارد. پروپیول ارتفاعی پس از اراضی کشاورزی و بافت‌های از ۱۴۰۰ متر از نیروگاه شروع و تا ارتفاع ۳۲۰۰ متر از سطح دریا در منطقه شمالی شابلی با توجه به جاده دسترسی ادامه دارد. در سطح این پروپیول دو رشته‌گاه کلان، ریزیونومیکی و خیسی شفت علف بوته‌زار و جنگل گسترش دارد. همچنین، سطوح قابل توجهی در بخش‌های پایین پروپیول به صورت دیپیژن‌های متروک‌کننده شکسته (شکل 1). بر اساس میانگین آمار ۳۳ ساله ایستگاه‌های هوشمند منطقه و اطراف و گردایان بارانی و دمای استخراج شده حداکثر بارانی در این روش‌گاه‌ها ۲۴۳ تا ۵۹۵ میلی‌متر و متوسط دمای حداکثر تا ۵۱/۱۱، دمای متوسط ۹۱/۶۹ و دمای حداقل ۹۱/۰۵ تا ۱۶/۱۳ میلی‌متر و متوسط دمای حداکثر ۱۰۸/۰۱۰۸ درجه سانتی‌گراد می‌باشد (نظری عنبران. ۱۳۹۳). اقلیم منطقه نیمه خشکی نیمه مرطوب و دمای در نیمه عرضی از آب و هوا بوده و در بنیانه این واقعیت برخورد این دمای دارد (پاکرود ۱۳۹۱ نظری عنبران. ۱۳۹۳). خاک روش‌گاه‌های انتخب شده عمیق با بافت متنوع بوده است (کرمی. ۱۳۹۳، جغرافی. ۱۳۹۵). میکانی های نمونه‌برداری در سطح سبزی و گیاهی علف بوته- زار با تأکید بر سه طبقه انتخاب ۱۵۰۰ تا ۲۰۰۰۰ متر ۲۵۰۰۰ متر ۲۷۵۰۰ تا ۲۰۰۰۰ متر انتخاب.
روش تحقیق

در سطح پروپیل ارتفاعی انتخاب شده با توجه به گسترش واحد رویشی علی بوتهزار 7 ترانسکت به طول 100 متر (200 پلاط به فاصله 10 متر از یکدیگر) از اولین اردبیشت تا اولین تیرامه سال 1392 با بسیاری میدانی، بهطور سیستماتیک، تصادفی در سطح این جوامع و با توجه به جهات فرعی (فقط در دامنه شمالی) و در سطح به شیب همگن (12-20 درصد) انتخاب شد (شکل 1 و جدول 1). در انتخاب این پلاط‌ها، انتخاب گیاهان و گزارشات قبلی (قرآنی و همکاران، 1392) که پلاط‌ها یک مرتبه‌ای را در مراتع سبلان مناسب عنوان کرده‌اند، مورد توجه قرار گرفت. نمونه‌هایی که از پلاط‌های پنجم و دهم ترانسکت از عمق 300 سانتی‌متری (عمق متوسط خاک رویی و متوسط ریشه) خام مورد بررسی و پلاط‌هایی که از پلاط‌های منطقه و ریشه واردات و با هم مخلوط نشده با هم و با آزمایشگاه‌های خاک‌نشین دانشگاه محقق اردبیلی انتقال داده شد. قابل ذکر است در طبقه ارتفاعی 1500 تا 1600 متر با توجه به بی‌توجهی و تخریب صورت گرفتن و همچنین رعایت دامنه شمالی و طبقه شیب همگن امکان انتخاب ترانسکت با فاصله تا قابل توجه به روی بوتهزار علی بوتهزار وجود نداشت و تا نهایت یک ترانسکت انتخاب شد. از ناحیه نقشه طبقات ارتفاعی، شیب، جهات جغرافیایی، دما و بارش (بر اساس گرادیان جغرافیایی و دمای استخراج پارامترهای فوق ArcGIS 10.1) برای هر یک از پلاط‌ها استخراج شد. پارامترهای سیستم‌ها، لای، شن، روش هیدرومتری (Klute and Dirksen, 1986) و روش گردش جغرافیایی (Rhoades, 1986) درصد از هکب در روستای خانه روستای خانه روش خنگی کردن با دست گلریزی و تیپریسیون با سوخت سیستم قابل جذب به روش طیف سنجی، پیشنهادی به روش فیلیم فتوسنتزی (Nelson, 1986) ماده الی، مداد
تشريیح حفاظت زیست بوم گیاهان/ دوره ششم، شماره دوازدهم، بهار و تابستان 1397

آلی فر ویکی (Gregorich and Beare, 2008) به روش الگوریتمی (Kay, 2000) در آزمایشگاه اندازه گیری شد. گونه‌های گیاهی جمع‌آوری شده (64 گونه) با استفاده از منابع مانند کومنجو (1954-1934)، قهرمان (Komarov, 1934-1935، (مبین، 1388-1382)، (مسمی، 1362-1364)، (آسی و همکاران، 1376-1378)، رشنگر و همکاران (1376-1378) و غیره انجام شد (فرهست و تحلیل Davis, 1963-1998، Rechinger et al., 1963-1998، (Kay, 1934-1954) که در همین مجله به جابر رسیده ارائه شده است. برای مشخص کردن تأثیر عوامل محیطی بر گسترش بوش گیاهی از روش PCA تجزیه به مؤلفه‌های اصلی (PCA) استفاده شد. در انتخاب مؤلفه‌های در روش مقدار ویژه و مقدار BSE مورد توجه قرار گرفت. لذا مؤلفه‌ها تا نهایی انتخاب شدند. در محله قرمز، به منظور بررسی ارتباط گونه‌های شناسایی شده با عوامل محیطی از آنالیز مبتنی بر PCA (CCA) با تشکیل چند تجزیه و تحلیل متغیره‌ی رسمی انجام گردید که با استفاده از نرم‌افزار نرمافزار BSE فناورانه می‌شود. گونه‌های کلی از تجزیه به مؤلفه‌های اصلی و آنالیز مبتنی بر PCA (CCA) با استفاده از نرمافزار BSE فناورانه می‌شود. گونه‌های کلی از Tcheh و P. 22.
شکل ۱- موقعیت منطقه مورد مطالعه در سطح ایران و استان اردبیل و همچنین موقعیت تراسکت‌های نمونه‌برداری (اندازه تراسکت به صورت شکل شماتیک بوده و برگردار در مقایسه نقشه رسم شده است)
نتایج

ویضیت کلی پوشش گیاهی و گونه‌های انتشار یافته

در مجموع از سطح ۵۰ پلاک بررسی شده ۴۴ گونه گیاهی متعلق به ۲۲ تیره و ۴۸ جنس شناسایی شد. تیره‌های گیاهی Asteraceae و Fabaceae, Poaceae مشهور به ترتیب بیشترین حضور را در منطقه دارند (جدول ۲). ترکیب کامل ترکیب و تیپ گونه‌ی تغییرات آن در مقاله اول این مطالعه در همین مجله به جای رسیده است. با توجه به جدول ۳ بیشترین تیپ و نرگار گونه‌های در طبقه ارتقاء میانی (۵۰۰-۷۵۰ متر) با ۴۹ گونه مشاهده شد. در طبقه ارتقا ۲۰۰۰-۵۰۰ متر ۲۰ گونه و در طبقه Alyssum ۲۵۰۰-۲۰۰۰ متر نیز ۲۹ گونه شناسایی شد (تعدادی از گونه‌ها مانند Arenaria rotundifolia, Alyssum desertorum, Euphorbia, Carex divisa, Euphorbia repens, Poa compressa, Carex divisa, Trifolium decipiens Veronica pusilla, Poaceae با تعدادی از گونه‌ها در طبقه ارتقا ۲۰۰۰-۲۵۰۰ متر و Poaceae با ۴ گونه و Poaceae, Brassicaceae با ۵ گونه در طبقه ارتقا ۲۵۰۰-۳۰۰۰ متر مشاهده شدند.
اردوین فردی و همکاران

هر کدام یا ۳ گونه و همچنین در طبقه ارتفاعی ۲۷۰۰-۲۵۰۰ متر با ۴ گونه خانواده‌ای غالب گیاهی به شکل داده‌اند (جدول ۲).

جدول ۲: گونه‌های انتشار یافته در طبقات ارتفاعی مختلف

<table>
<thead>
<tr>
<th>گونه‌های کیابی</th>
<th>طبقات</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aegilops neglecta</td>
<td>۲۵۰۰-۲۰۰۰</td>
</tr>
<tr>
<td>Alyssum desertorum</td>
<td>۱۵۰۰-۱۱۰۰</td>
</tr>
<tr>
<td>Astragalus</td>
<td>۲۰۰۰-۲۴۰۰</td>
</tr>
<tr>
<td>Bromus pinetorum</td>
<td>۱۵۰۰-۱۰۰۰</td>
</tr>
<tr>
<td>Carex divisa</td>
<td>۱۰۰۰-۵۰۰</td>
</tr>
<tr>
<td>Crepis sancta</td>
<td>۱۰۰۰-۵۰۰</td>
</tr>
<tr>
<td>Festuca ovina</td>
<td>۲۵۰۰-۲۰۰۰</td>
</tr>
<tr>
<td>Hordeum glaucum</td>
<td>۱۵۰۰-۱۰۰۰</td>
</tr>
<tr>
<td>Leontodon autumnalis</td>
<td>۲۵۰۰-۲۰۰۰</td>
</tr>
<tr>
<td>Malva neglecta</td>
<td>۲۵۰۰-۲۰۰۰</td>
</tr>
<tr>
<td>Papaver orientale</td>
<td>۲۰۰۰-۱۵۰۰</td>
</tr>
<tr>
<td>Potentilla bifurca</td>
<td>۱۵۰۰-۱۵۰۰</td>
</tr>
<tr>
<td>Veronica pusilla</td>
<td>۱۵۰۰-۱۰۰۰</td>
</tr>
</tbody>
</table>


نتایج حاصل از گروهبندی پلاک‌ها با استفاده از روش تجزیه بیعوامل‌های اصلی (PCA)

نتایج گروهبندی پلاک‌ها برای مشخص کردن تأثیر عوامل اکولوژیکی در ترکیب و تنویع گونه‌ها با استفاده از روش PCA در جداول 3 و 4 و شکل 2 ارائه شده است. طبق جدول 3، چهار مؤلفه اول BSE در جدول اول تا چهارم به ترتیب 34/32, 34/38, 24/34, 16/81 درصد از واریانس کل داده‌ها را توجیه می‌کند که کل‌اً 189 درصد از تغییرات داده‌ها را شامل می‌شود. با توجه به جدول 4 عوامل مربوط به سیستم‌های خاکی، مواد آلی ذراتی، ماده آلی، شن، دما، ارتفاع از سطح دریا و بارندگی در درجه اول اهمیت، طبق مؤلفه دوم فسفر، میانگین وزنی قطر خاک‌دانه‌ها، هدایت الکتریکی، خاک لخت، سنگ و سنگریزه، پناسیم و سیل در تفکیک پلاک‌ها مؤثر می‌باشند. طبق مؤلفه سوم رس، و شب باغ تفکیک پلات‌ها شده است. بر اساس مؤلفه چهارم نیز لاشرگ عامل مؤثر می‌باشد.

جدول 3- مقادیر ویژه، درصد واریانس توجیه شده به‌صورت مجزا و تجمعی و مقادیر مربوط به هر یک از مؤلفه‌ها

<table>
<thead>
<tr>
<th>Broken-stick Eigenvalue</th>
<th>واریانس تجمعی</th>
<th>درصد واریانس</th>
<th>مقادیر ویژه</th>
<th>مؤلفه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/89</td>
<td>84/53</td>
<td>32/53</td>
<td>9/79</td>
<td>1</td>
</tr>
<tr>
<td>2/39</td>
<td>68/83</td>
<td>24/30</td>
<td>5/33</td>
<td>2</td>
</tr>
<tr>
<td>3/19</td>
<td>85/37</td>
<td>34/34</td>
<td>3/44</td>
<td>3</td>
</tr>
<tr>
<td>1/85</td>
<td>94/19</td>
<td>36/81</td>
<td>3/49</td>
<td>4</td>
</tr>
<tr>
<td>1/60</td>
<td>98/70</td>
<td>4/51</td>
<td>9/99</td>
<td>5</td>
</tr>
<tr>
<td>1/40</td>
<td>1/38</td>
<td>1/38</td>
<td>1/38</td>
<td>6</td>
</tr>
</tbody>
</table>

244
جدول ۴- ضرایب بردارهای ویژه مربوط به متغیرهای در مؤلفه‌های اصلی روش PCA

<table>
<thead>
<tr>
<th>مؤلفه</th>
<th>خصوصیات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>اسیدیت‌های خاک</td>
</tr>
<tr>
<td>۲</td>
<td>مواد آلی در های (٪)</td>
</tr>
<tr>
<td>۳</td>
<td>ماده آلی (٪)</td>
</tr>
<tr>
<td>۴</td>
<td>آب (٪)</td>
</tr>
<tr>
<td>۵</td>
<td>دما (°C)</td>
</tr>
<tr>
<td>۶</td>
<td>ارتفاع (m)</td>
</tr>
<tr>
<td>۷</td>
<td>بارندگی (mm)</td>
</tr>
<tr>
<td>۸</td>
<td>فسفر (ppm)</td>
</tr>
<tr>
<td>۹</td>
<td>میزان ورود قطر جاکنده‌ها (mm)</td>
</tr>
<tr>
<td>۱۰</td>
<td>هدایت الکتریکی (ds/m)</td>
</tr>
<tr>
<td>۱۱</td>
<td>خاک لخت (٪)</td>
</tr>
<tr>
<td>۱۲</td>
<td>سنگ و ستونزده (٪)</td>
</tr>
<tr>
<td>۱۳</td>
<td>پیاسیم (ppm)</td>
</tr>
<tr>
<td>۱۴</td>
<td>سیلت (٪)</td>
</tr>
<tr>
<td>۱۵</td>
<td>رس (٪)</td>
</tr>
<tr>
<td>۱۶</td>
<td>شبیه (٪)</td>
</tr>
<tr>
<td>۱۷</td>
<td>لاشارک (٪)</td>
</tr>
</tbody>
</table>

۲۲۵
نتایج حاصل از گروه‌بندی بالاترا با استفاده از روش CCA

طبق جدول ۵ و شکل ۳ مؤلفه اول، دوم و سوم مجموعاً ۵۲/۹ درصد از تغییرات در سطح بالاترا را توجیه می‌کند. بر اساس بردارهای ویژه متغیرها در مؤلفه اول که بیش از ۵۰ درصد تغییرات را توجه می‌کند، عوامل اکولوژیکی پتانسیم، درصد سیلیت، شبب پارندگی، ارتفاع از سطح دریا، تغییرات در سطح بالاترا را در بر می‌گیرد. مؤلفه دوم نیز شامل یارانه‌های درصد آهک، فسفر، دما، هداپیک الکتریکی، درصد خاک و خاک‌سازی و یک قطر خاک‌ئانها حداکثر ۱۷ درصد تغییرات در سطح بالاترا را در بر می‌گیرد. مؤلفه سوم نیز در بر داردند درصد مواد آلی دریه، رس، سنگ و سنگ‌تراز، ماده آلی، لاشیرگ، شن و اسیدیت خاک حداکثر ۹ درصد تغییرات در سطح بالاترا را بی‌خود اختصاص داده‌اند.
جدول ۵ - مقادیر وزه، درصد توجهی واریانس، درصد تجمعی توجهی واریانس و بردار وزه مربوط به متغیرها در هر یک از مؤلفه‌های در روش CCA

<table>
<thead>
<tr>
<th>مؤلفه</th>
<th>خصوصیات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>مقدار وزه</td>
<td>۰/۰۲ /۰/۰۷ /۰/۰۱</td>
</tr>
<tr>
<td>درصد توجهی واریانس</td>
<td>۱/۵۱ /۰/۷۳ /۰/۴۴</td>
</tr>
<tr>
<td>درصد تجمعی توجهی واریانس</td>
<td>۰/۵ /۰/۶ /۰/۷</td>
</tr>
<tr>
<td>یکنام (ppm)</td>
<td>۰/۹۹ /۰/۹۸ /۰/۷۱</td>
</tr>
<tr>
<td>سیلت (‰)</td>
<td>۴/۷</td>
</tr>
<tr>
<td>شیب (‰)</td>
<td>۲/۰۴ /۰/۱۶ /۰/۰۳</td>
</tr>
<tr>
<td>پانزده (mm)</td>
<td>۷/۶۷ /۰/۴ /۰/۰۹</td>
</tr>
<tr>
<td>ارتفاع (m)</td>
<td>۷/۶۷ /۰/۴ /۰/۰۹</td>
</tr>
<tr>
<td>آهک (‰)</td>
<td>۹/۱۹ /۰/۷۲ /۰/۴</td>
</tr>
<tr>
<td>فسفر (ppm)</td>
<td>۵/۰ /۰/۹ /۰/۱</td>
</tr>
<tr>
<td>دما (°C)</td>
<td>۲/۰۱ /۲/۷۷ /۲/۳۲</td>
</tr>
<tr>
<td>سیلیت الکتریکی (ds/m)</td>
<td>۲/۳۵ /۰/۵۸ /۰/۱۷</td>
</tr>
<tr>
<td>خاک لخت (‰)</td>
<td>۲/۰ /۰/۵ /۰/۵</td>
</tr>
<tr>
<td>میانگین وزنی قطر خاک‌کنها (mm)</td>
<td>۰/۲۳ /۰/۱۲ /۰/۰۶</td>
</tr>
<tr>
<td>مواد الی‌که‌رای (‰)</td>
<td>۱/۰ /۰/۷ /۰/۱</td>
</tr>
<tr>
<td>رس (‰)</td>
<td>۰/۷۲ /۰/۵۸ /۰/۵</td>
</tr>
<tr>
<td>سنگ و سنگرزیه (‰)</td>
<td>۳/۷۶ /۰/۱۶ /۰/۵</td>
</tr>
<tr>
<td>ماده آلی (‰)</td>
<td>۰/۱۵ /۰/۸ /۰/۳</td>
</tr>
<tr>
<td>لاسترگ (‰)</td>
<td>۱/۵۲ /۰/۴ /۰/۱</td>
</tr>
<tr>
<td>شن (‰)</td>
<td>۱/۳۸ /۰/۲ /۰/۰</td>
</tr>
<tr>
<td>اسیدیته خاک</td>
<td>۱/۳۸ /۰/۲ /۰/۰</td>
</tr>
</tbody>
</table>

۲۷۷
بحث و نتیجه‌گیری

با توجه به نتایج این تحقیق، عوامل بومشناسی در تشکیل و استقرار جوامع گیاهی تأثیر بسزایی دارند و ارتباط قوی و تزدیکی بین عوامل محیطی و گونه‌های گیاهی وجود دارد. شناخت چگونگی ارتباط این عوامل با گونه‌های گیاهی می‌تواند در تدوین و مدیریت بویش گیاهی نقش مؤثری ایفا کندن. نتایج بررسی فلور دامنه‌های شمالی سیلان، تحت تأثیر ارتفاع منجر به نشان‌گذاری ۴۶ گونه‌گیاهی، مربوط به ۴۸ جنس و ۳۲ تیره گردید. بیشترین تراکم گونه‌های گیاهی موجود به ترتیب مربوط به تیره Poaceae و Fabaceae با ۲۵ درصد و Asteraceae با ۱۲/۵ درصد می‌باشد. بنابراین، می‌توان گفت مهم‌ترین تیره‌های گیاهی این منطقه گندمیان، پروتی آسیایی و کاسنی می‌باشند. بهدلیل
اردوون قرائنی و همکاران

کوهستانی بودن و آب و هوای برد و منتل مشاهده گیاهان همی کریپتوتفیت (چندساله) بیشتر از سایر فرم‌ها در منطقه مورد مطالعه گسترش دارد که با مطالعات شریفی همکاران (1391) مطابقت دارد. همی کریپتوتفیت‌ها در طبقات ارتفاعی میانی و فوقانی بیشتر گسترش داشته‌اند، ولی در طبقه ارتفاعی تحتانی 2000-3000 متر ترکیب با حضور کشت‌های تازه شکوفا می‌باشد. مهیج‌هنگ مقدار تنوع در طبقه ارتفاعی میانی مشاهده شد و بررسی تأثیر ارتفاع بر ترکیب و تنوع گونه‌ای در سطح سطح به‌طور کلی نشان داد که گونه‌ها در طبقات ارتفاعی میانی مخلوط شده‌اند. در صورت شرایط مناسب، انتقال گونه‌های متفاوت به طبقات ارتفاعی بالا ممکن است.

یافته‌های این تحقیق نشان می‌دهد که تفاوت در ارتفاع بین طبقات ارتفاعی میانی و فوقانی ممکن است در تأثیر سطح سطح و شرایط محیطی داشته باشد. در تحقیقات پیشین، تأثیر ارتفاع بر تنوع گونه‌ها در طبقات ارتفاعی میانی و فوقانی محقق نموده‌اند. در این تحقیق نیز، تأثیر ارتفاع بر تنوع گونه‌ها در طبقات ارتفاعی میانی و فوقانی در سطح سطح به‌طور کلی نشان داد، ولی در صورت شرایط مناسب، انتقال گونه‌های متفاوت به طبقات ارتفاعی بالا ممکن است.

در نتیجه، نتایج این تحقیق نشان می‌دهد که تفاوت در ارتفاع بین طبقات ارتفاعی میانی و فوقانی ممکن است در تأثیر سطح سطح و شرایط محیطی داشته باشد. در تحقیقات پیشین، تأثیر ارتفاع بر تنوع گونه‌ها در طبقات ارتفاعی میانی و فوقانی محقق نموده‌اند. در این تحقیق نیز، تأثیر ارتفاع بر تنوع گونه‌ها در طبقات ارتفاعی میانی و فوقانی در سطح سطح به‌طور کلی نشان داد، ولی در صورت شرایط مناسب، انتقال گونه‌های متفاوت به طبقات ارتفاعی بالا ممکن است.
نشانی حفاظت زیست یوم گیاهان/دوره ششم، شماره دوازدهم، بهار و نیسان ۱۳۹۷

پایداری خاکدانه‌های گرگرت از یک میلی‌متر تا نیم‌متر و در نتیجه این خاکدانه‌ها در آب پایدار نیویده و به ذرات گوشتی تبدیل شده‌اند. همچنین بر اساس نتایج روش CCA نیز مهم‌ترین عوامل تأثیرگذار به ترتیب شامل: تنش، درصد سیلت و شیب، بارانگی و ارتفاع از سطح دریا، آه، فسفر، دما، هماید صالحی‌کیا، درصد خاک لخت، میانگین وزنی قطر خاکدانه‌ها، مواد آلی ذرا، درصد رس، سنگ و وسغ ریزه، ماده آلی، لاش‌گر، درصد شن و استدیم خاک از عوامل مؤثر در شکل‌گیری پوشش گیاهی در این منطقه می‌باشد. بنابراین می‌توان نتیجه گرفت که در این منطقه، پراکنش گونه‌های مرتعی موجود، تحت تأثیر خصوصیات فیزیکی و شیمیایی خاک و عوامل توبوگرافی قرار گرفته‌اند و با توجه به نتایج هر یک از جمله عواملی است که بر پراکنش گونه‌های موثر بوده است. این عوامل، رابطه مستقیمی و عضما، رابطه عکس با تراکم و ناحیه برخی گونه‌ها در منطقه مورد مطالعه می‌وشده است. علت آن وجود مقدار مناسب اهمیت در ایجاد ساختاری مناسب و تغذیه اسیدیته خاک و به دنبال آن در جذب مواد غذایی موثر بوده و یکی از جهت افزایش کیفیت محیطی این منطقه می‌باشد. مطالعه ما نشان داد که بافت خاک نیز در تأثیرگذاری گیاهانی گیاهی پوشش موثر بوده است. ویلس-روژ و همکاران (۲۰۰۳) نیز مورد تأکید قرار گرفه است. این عوامل به دلیل تأثیر در میزان آب و انعکاس در سطوح گیاهان و نیز تنوع و وقوع ریشه‌دانی گیاه در پراکنش‌گونه‌های گیاهی موثر بوده است. ویلس-روژ و همکاران (۲۰۰۳) نیز با استفاده از CCA در منطقه سان گلاس مرکزی بین پوشش گیاهی و عوامل محیطی گزارش کردند که عوامل محیطی مختلفی مانند ارتفاع از سطح دریا، بارانگی، زرگری خاک و اقلیم دراز اثر می‌گذارند. همچنین، قربانی و اسکویی (۱۳۹۲) با تحلیل تجزیه به مولف‌های اصلی و آنالیز تشخیص عوامل ارتفاع از سطح دریا، پارامترهای دما و بارانگی، درصد سیلت، فسفر، درصد شن، درصد مواد آلی، درصد شیب، هدایت الکتریکی، جهت، اسیدیتی، و نرخ نشان دادند که عواملالی، رسانه‌های Competence در مراحل جنوب شرقی سیلان، گزارش کردند که مطالعه نتایج ما به‌دست است. همچنین زارع حسیبی و همکاران (۱۳۹۲) نیز عوامل ارتفاع، بارانگی و دما، شیب مواد آلی، رس سیلت، سنگ و سنگریزه، شن، فسفر، پاتاسیم، کربنات، الکسیم معدنی PH، الکسیم الکتریکی، جهت و
لاش برگ‌های از عوامل تأثیرگذار در انتشار گونه Abd El-Ghaniet (2014) نیز در تأثیرات بهبود محتوی مختلف بر گسترش جوامع گیاهی را تأکید و عوامل مانند ارتفاع از سطح دریا، شیب، طول جغرافیایی و عمق خاک را به عنوان مهم‌ترین عوامل گزارش کردند.

ویژگی‌های بیشتری و بینایی همچون ارتفاع از سطح دریا، شیب و جهت از عواملی هستند که اب قابل دسترس را تحت تأثیر قرار می‌دهند. بنابراین، نتایج مطالعه ما ارتفاع از سطح دریا و شیب عامل تأثیرگذاری است که با توجه به اینکه مکان‌های انتخاب شده برای مطالعه در مناطق هم‌زمانی واحدهای مالکال بوده و نه در مناطق دیگری وجود نداشتند، در پراکنش پوشش گیاهی منطقه مورد مطالعه اثر معمولی در ناشت آن داشته است. با افزایش ارتفاع از سطح دریا، دما کاهش و وزش باد بیشتر می‌شود و معمولاً به دنبال آن ضعیف‌شدن و عمق خاک کمتر می‌شود که در این شرایط حضور گونه‌ها تحت تأثیر قرار می‌گیرد (خیبری و همکاران، ۱۳۹۵). از دیگر عواملی که نقش اصلی در این دیدگاه را داشته‌اند (Mark et al., ۲۰۰۰) نیز انرژی اکوسیستم به ویژگی‌های تغییراتی از جمله شیب و جهت جغرافیایی) عامل‌های اصلی گیاهی پراکنش پوشش گیاهی در منطقه کوهستانی هستند. بارچ (۲۰۰۵) نیز با استفاده از روش CCA یکی از عوامل مؤثر در پراکنش پوشش گیاهی سولان. های اثر نزدیکی از سطح دریا گزارش کرد است که تأثیر کندنی نتایج ما مشابه گزارش‌های همکاران (۲۰۰۳) نیز در بررسی مراتع کوهستانی آزادانه با استفاده از روش CCA نشان دادند که ارتفاع از سطح دریا مهم‌ترین عامل تنوبیف کننده ترکیب گیاهی در آن منطقه و تأیید کننده نتایج ما به است. همچنین، نتایج ویربس-روز و همکاران (۲۰۰۳) نیز در این زمینه مشابه نتایج ما باشند. درصد شب‌های بر روی پوشش‌های گیاهی در مراتع سلسله‌ای تأثیرگذار بوده است که در راستای تأثیر فیزیکی و آبی‌گی یک (۱۳۹۳) بوده است. همچنین در این تحقیق، شب‌های نیز علی رغم هم‌گری در نظر گرفته شده (۱۲–۰۳) -۴۰ درصد و نوسانات کم آن در انتشار گونه‌ها (Trigopogon buphthalmoids, Poa compressa, Galium verum, Ranunculus trichocarpus) دوی می‌باشد. دوبیس و همکاران (۲۰۰۶) گزارش کردند که شب‌های عامل غیر خاکی است که دست کم همبستگی متوسط با ترکیب گونه‌ها دارد که به‌عنوان تأثیر کندنده
نتایج ما بیان کننده این است که بررسی درجه همبستگی جوامع گیاهی با عوامل نیتروگنافی در منطقه نردنب شناش داده که بین عوامل پستی و پنله و برخی از ویژگی‌های پوشش گیاهی مانند ترکیب نوع و نرخ گونه همبستگی معنی‌داری وجود دارد و نتایج آن کننده نتایج ما بیان می‌شود. همچنین ارتباط این نتایج با تغییرات درصد پوشش گیاهی به این نتیجه رسید که بین ترکیب نوع پوشش کل با تغییرات ارتفاع و شیب پیش‌ترین همبستگی وجود دارد. در مجموع نتایج آنالیزهای انجام شده در سطح سه طبقه ارتفاع تغییر شده، نشان دهنده افزایش نرخ پوشش گیاهی و ترکیب گونه‌ها با افزایش ارتفاع بود.

پارامترهای اقیمی نیز از عوامل تأثیرگذار بر ترکیب و ترکیب گونه‌های می‌باشند. با توجه به نتایج مشخص گروه گیاهانی که تشکیل داده ارتباط مستقیمی با پوشش گیاهی منطقه مورد Bromus tectorum, Arenaria و CCA و PCA نشان داده. این نتایج نشان می‌دهد که بارندگی و دما هر دو از عوامل مؤثر در گستره پوشش گیاهی منطقه مورد مطالعه می‌باشند. طبقه اول ارتباطی با گونه‌های Alyssum desertorum و rotundifolia Villers- Ruiz et al. (2003) نشان داد که عوامل مورد بارندگی در پراکنش پوشش گیاهی نشان می‌دهد. همچنین مطالعات قربانی و استری (1392) و زارع حصاری و همکاران (1394) نیز پارامترهای اقیمی را از عوامل تأثیرگذار در انتشار گونه‌های گیاهی در مراتع سیمان عناوین کرده که با نتایج ما همخوانی می‌باید.

خصوصیات طیزیکی و شیمیایی خاک در رابطه با پوشش گیاهی بنا بر ترکیب و پراکنش جغرافیایی وسیع گیاهان می‌شوند. فسفر و از مهیج‌ترین عناصر غذایی در تغذیه گیاهی است که در رشد زراعی نقش مهمی دارد. اگر چه میزان فسفر مورد نیاز در مقایسه با مقدار سابقه عناصر اصلی کم است با این حال این عنصر جزو عناصر پر مصرف محصول می‌شود. تغییرات بافت خاک از دیگر عوامل است که علاوه بر تأثیر در جذب مواد غذایی و تهه‌بر، بر میزان رطوبت قابل دسترس گیاهان نیز مؤثر است و در پراکنش پوشش گیاهی نقش مهمی دارد. pH خاک زیر از عوامل تأثیرگذار بر روی ترکیب گونه‌های EC ماهیتی و pH ماهیتی می‌باشد. pH از اهمیت، مواد الیترمایی، سنج و ستگری، هدایت الکتریکی، فسفر، مالئین و وزنی مثل در حاکمیت خاک‌داران، درصد رس، پنل و درصد سیلیت از عوامل وابسته به خاک تأثیرگذار در انتشار پوشش گیاهی منطقه شمال سیستان بوده است. به طوریکه گونه‌های برداشت شدید از بلوط‌های دارای بیشترین ارتفاع (به‌طور متوسط ٣٧٠ متری) و گونه‌های اقلیمی در
اردوان قربانی و همکاران

پلاهایی با کمترین ارتفاع (۱۵۵۰ متری) تحت تأثیر عوامل مختلف محیطی به وجود آمدند. در گروه اول، گونه‌ها متأثر از بابت سیلیئی منطقه بوهد و هدایت الکتریکی و پنسیم بر انتشار آنها تأثیر مثبت داشتند. در صورتی که گونه‌های طبقات پایین‌تر نظر trichophila, Euphorbia decipiens, Carex divisa, Veronica pusilla, Astragalus بیشتر متأثر از بخت شبی خاک انتشار یافتند. ماده‌ای آن و ماده ای در بسته Polygynnum aviculare, Trifolium repense, Tragopogon در انتشار گونه‌های مؤثر بوده است.

EC است. طهماسبی (۱۳۸۲) نیز گزارش کرد که این عوامل خاکی فسفور، رس خاکی و pH بر بیشترین اثر را بر پوشش ثابت برازی و تراکم گونه‌ها داشته‌اند. ماده‌ای خاک نیز به دلیل غنی بودن از این می‌تواند که اشاره شده در این تحقیق نیز ماده‌ای یکی از خصوصیات خاکی بوده و تغییرات پوشش‌گاهی بوده است که با نتایج هم و همکاران (۲۰۰۷) نیز در بررسی‌های خویش گزارش کرده‌اند که میزان آهک یکی از عوامل مؤثر بر پراکنش پوشش گیاهی است. میانگین وزنی قطر خاک‌های گیاهی نیز از عوامل زیاد که بر انتشار گونه‌های Allysium desertorum, Arenaria, Veronica persica, Galium verum, Ranunculus trichophila, Euphorbia decipiens, Carex divisa, Veronica pusilla, Astragalus به آنها می‌باشد. در مجموع، یزدانی خاک تأثیر بسزایی در پراکنش Allysium desertorum, Arenaria، منطقه بوهد است. در مجموع، یزدانی محیطی گیاهی، تراکم گونه‌ها و لاسیورگ پایش منعی داری نسبت به ارتفاع در دامنه‌های شمالی سیلان از خود نشان داد. نتایج تحقیقات حاصله گواه بر این امر بود که ارتفاع از سطح دریا بر روی پراکنش گونه‌ها تأثیر معنی‌داری نسبت به طبقه ارتفاعی تعیین شده متفاوت از یکدیگر است. باعث شده که در طبقه ارتفاعی ۱۵۰۰ تا ۲۰۰۰ متری Bromus گونه‌ها کمترین قندار را نسبت به دو طبقه ارتفاعی دنی درا بوهد و گونه‌های Allysium desertorum و tectorum, Arenaria rotundifolia در این طبقه غالب‌بود. جنین به نظر می‌رسد که تندیکی به مناطق مسکونی و چراچ دام، موجب شده است که بیشتر گونه‌ها Carex divisa, Euphorbia decipiens, Veronica pusilla تحت تأثیر تخریب قرار گیرند. طبقه دوم ارتفاعی با غالبیت گونه‌های عرضه حضور جدایی گزارش و در منطقه هست و decipiens, Veronica pusilla گونه‌های منطقه به انتقالی Asteraceae و Poaceae در بالاترین طبقه ارتفاعی غالب‌بود. حضور

۲۳۳
تششیع حفاظت زیست بوم گیاهان/ دوره ششم، شماره دوازدهم، بهار و تابستان ۱۳۹۷

با الهام گردیدن‌های چند سال‌های این طبیعی ارتقاء نشان‌دهنده ایل موضوع است که با وجود تخریب‌های موجود، گونه‌های به‌طور کلی از بین کم‌رسیده همچنین عوامل اقلیمی و عوامل وابسته به خاک نیز در تغییر ترکیب و تنویع پوشش گیاهی مراتب شمال سیستان مؤثر بوده است. به‌طور مثال، گونه‌های با Polygonum navicular, بالاترین نرخ در دریایی‌ها ۷ متعلق به طبقه‌ی سوم ارتقاء شامل گونه‌های می‌باشد. یکی از عوامل موثر بر این گونه‌های هدایت الکترویکی بوده است. این بودن هدایت الکترویکی احتمالاً به غلبه حضور عنصر باریک می‌باشد که مقدار آن بیش از سایر عناصر در این گونه‌های می‌باشد. مهم‌ترین نقش پتانسیم در ساخت کروم و تنظیم فتوترانزیک می‌باشد. بافت خاک نیز در روش‌گاه این گونه‌ها سبیلی است. پرها و همکاران (۱۳۹۴) نیز به نقش سیستم انتشار پوشش گیاهی اشاره کردند. گونه‌های طبقات مختلف در ارتباط با عوامل اقلیمی نیز عكس عملیات مختلفی از خود نشان دادند. به‌طوری‌که تحت عنوان Bromus tectorum, Carex divisa, Potentilla bifurcata, Poa compressa, Euphorbia decipiens, Veronica pusilla, Carex divisa, Trifolium repens شرایط مشابه‌ی را به لحاظ عوامل اقلیمی داشتند. اینب توجه به نتایج حاصله و مشخص شدن گونه‌های طبقات مختلف و نیز مشخص شدن عوامل موثر در انتشار گونه‌ها در مدت‌بردار مراتب، به‌خصوص در سیر اصلاح و احیای این منطقه، می‌توان از نتایج این تحقیق استفاده تا میزان موفقیت پروژه‌های اصلاح و احیا بیشتر شود.

ممنع

آذربایجان غربی، ج، ۱۳۸۱. بررسی خاک و پوشش گیاهی در ارتفاعات بوشهر یزد زمین‌شناسی در دامغان، مجموعه سمی‌نامه‌ی برسی مناطق بیابانی و خشک در ایران: ۵۵۸ صفحه.

اسدی، م، معصومی، غ، خاتمی‌فر، م، مظفریان، و، (ویراستاران)، ۱۳۹۲-۱۳۸۷. فلور ایران. انتشارات مؤسسه تحقیقات جنگل‌ها و مراتع. ش، ۷–۱۳۸۷-۱۳۸۰ صفحه.

ایرانی‌ها کرمانی، ج، ۱۳۸۱. بررسی تأثیر عوامل توزیع گیاهی و چرا بر تغییرات در دریایی پوشش گیاهی در تنویع در زیب حوزه سفید اهواز، پایان‌نامه کارشناسی ارشد رشته مزرعه‌ی، دانشگاه مازندران، ۲۸ صفحه.

پرها و همکاران، ج، رحیمی، ر، عدل، م، ۱۳۹۴. اثر عوامل محیطی بر پراکنش گیاهان مرئی در منطقه‌ی دیواندره کردن. پویش‌نامه‌ی کاربردی، ۱۱، ۳۲-۳۷.

۲۰۵
اردوان قربانی و همکاران

جعفری پهلی، س. ۱۳۹۵. مقایسه خصوصیات فیزیکی و شیمیایی خاک در مراتع مغان و سیلان، پایان‌نامه کارشناسی ارشد رشته علوم خاک، دانشکده‌های زمین‌شناسی، دانشگاه تهران. ۱۲۸صفحه.

۱۳۸۵. جعفری، م. زراعت جاهوکی، م. طولی، غ. کهندل. ا. بررسی رابطه خصوصیات خاک با پراکنش گونه‌های گیاهی در مراتع استان قم، پژوهش و سازندگی. ۱۹ (۳): ۱۰۹-۱۱۱.

جعفری، م. باردی، س. کرمشاهی، غ. مزبانی. ا. ۱۳۹۵. آت اکوپژی و فنولوژی گونه به در رابطه با عوامل ادایگی و فیزیوگرافی در چنگال‌های کیبرکه شهرستان دره (Pistacia atlantica).

شهر، استان ایلام، پژوهش‌های گیاهی. ۴۹ (۱): ۸۰-۸۵.

زراع جاهوکی، م. غ. ۱۳۸۵. مدل‌هایی از پراکنش یونه‌گیاهی در مناطق خشک و نیمه خشک، رساله دکتری رشته علوم مرتع، دانشکده منابع طبیعی، دانشگاه تهران. ۱۲۱ صفحه.

زراع حصاری، ب. قربانی، ا. عظیمی مطیعی، ف. هاشمی محمد ک. اسفری، غ. ۱۳۹۴. بررسی تأثیر زمین‌های آکوپژیک بر روی پراکنش Artemisia fragrans اکوپژیکی در مرتع جنوب شرقی سیلان، مرتع. ۳۸ (۲): ۲۳۸-۲۵۰.

شریفی، ج، جلیلی، غ، فاسواف، ش، نیک‌زاد، غ، عظیمی مطیعی، ف. ۱۳۹۱. بررسی فلورستیکه، شکل زیستی، دانه‌های شمالی و شرقی سیلان. تاکسونومی و و (wetland بوتوسماطیکی). ۱۲۸-۱۳۸.

شیخ حسینی، ار. توریخ ص. ۱۳۸۹. تأثیر نوع خاک و نیش‌گاهی بر شدت معده‌های خالص.

طبیعی و علوم دروبیایی. دانشگاه تربیت مدرس. ۸۲ صفحه.

هادی‌اللهی، ج، نادری، ح، صریحی‌یزدانی، م، طبیعی‌تاریکی، میر. ۱۳۹۲. بررسی عوامل محیطی بر خصوصیات رویشی گونه Stipabarbata در راهان استان لرستان. تحصیلات مرتع و بیانان ایران. ۷۲-۸۱.

صدری، ی. ۱۳۷۶. جامعه‌شناسی گیاهی، مؤسسه تحصیلات سازمان جنگلی و مرتع.

قربانی، ا، اسفری، غ. ۱۳۹۳. بررسی عوامل بوش‌نامه‌ی مؤثر بر انتشار گونه Festuca ovina در مرتع جنوب قربانی، ا، اسفری، غ. ۱۳۹۱. بررسی عوامل مرتع و بیانان ایران. ۲۷۸-۲۸۱.

قربانی، ا، اسفری، غ. ۱۳۹۳. بررسی عوامل بوش‌نامه‌ی مؤثر در انتشار گونه Festuca ovina در مرتع جنوب قربانی، ا، اسفری، غ. ۱۳۹۱. بررسی عوامل مرتع و بیانان ایران. ۲۷۸-۲۸۱.
نشره حفاظت زیست ورم گیاهان/ دوره ششم، شماره دوازدهم، بهار و تابستان ۱۳۹۷

فرابی، عباسی خالکی، م. اصیلی، ع، زراع حصاری، ب. کاکامی، م. ۱۳۹۷. مقاومه برخی عوامل Artemisia austriaca Jacq. و Artemisia fragrans Willd. در مراتع جنوب شرقی سیستان، مرتع. (۱۴): ۱۳۱-۱۴۱.

قلی‌نیا، ح. ۱۳۷۸. بررسی درجه هپاتیت گیاهی با عوامل تیوگرافی (نسبت و جهت) در منطقه نردین، بروجرد و ساری‌کندی، ۴۲: ۳۷-۳۳.

قره‌هاچ، ا. ۱۳۸۶-۱۳۸۷. فلور رنگی ایران، جلد‌های ۲۰۰۱-۲۰۰۲، انتشارات مؤسسه تحقیقات جنگل‌ها و مرتع، ۲۴۲۵ صفحه.

کمبری، ل. ۱۳۹۳. تجزیه و تحلیل تغییرات مکانی برخی از خصوصیات فیزیکی و شیمیایی خاک در سطوح ارتفاعی مختلف با استفاده از روشهای آمار کلاسیک و زمین آمار در دامنه شمالی سیستان، پایان‌نامه کارشناسی ارشد رشته علوم خاک، دانشکده فناوری کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، ۱۰۸ صفحه.

گوری، ا. سخنوری، م. ۱۳۷۷-۱۳۸۵. مطالعات اکولوژیکی و محیطی در سایه‌های Juniperus ایرانی، انتشارات مؤسسه M.S. ۲۰۰۲-۲۰۰۳. منابع غ. ۱۳۷۶-۱۳۸۵. گون‌های ایران، جلد‌های ۲۰۰۱-۲۰۰۲، انتشارات مؤسسه تحقیقات جنگل‌ها و مرتع، ۲۵۱۶ صفحه.

میربدلی، از. خشمی، غ. پارزی، ح. همی‌زاده، ی. ۱۳۹۱. فاکتورهای محیطی مؤثر در پراکنش اکولوژیکی سایه‌های در مراتع چیتک، مراوه تپه، تحقیقات مرتع و پیام‌های ایران، ۱۹(۲): ۳۲۳-۳۳۳.

نظری عنبران، ف. ۱۳۹۳. بررسی ساختار ترکیب و تنویع گونه‌های مرتعی در دامنه شمالی سیستان، پایان‌نامه کارشناسی ارشد رشته مرتع‌داری، دانشکده فناوری کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، ۱۳۰ صفحه.

نظری عنبران، ف. قربانی، ا. عظیمی معلم، ف. نیمور زاده، ع. اصغیری، ع. هاشمی مجد. ک. ۱۳۹۵. بررسی انواعی و تنویع گونه‌های در گردان ارتفاعی لاهورد- شابیل (شمال‌سیستان)، حفاظت و زیست، ۱۸-۱:

۱۳۶


anic and tropical high mountain affinities. Journal of Arctic Antarctic and Alpine Research, 32: 240-254.


