در این مقاله به اینکه گونه‌ای از گیاهان شاخه‌داری از جنوب شرقی سیلان می‌باشد، این مطالعه به دنبال تحقیق در حوزه ارتباط این گونه با گونه‌های دیگر در این منطقه است. در این مطالعه، نتایج ارتباطی بین این گونه و گونه‌های دیگر در این منطقه در نظر گرفته شده است. نتایج این مطالعه نشان می‌دهد که ارتباطی بین این گونه و گونه‌های دیگر در این منطقه وجود ندارد. این نتایج نشان می‌دهد که ارتباط بین این گونه و گونه‌های دیگر در این منطقه وجود ندارد.
نشیمه حفاظت زیست‌بوم گیاهان، دوره ششم، شماره سیزدهم، پاییز و زمستان ۱۳۹۷

انتشار داده و در روش‌گاه‌های گونه‌های با پراکنش جغرافیایی ایران- تورانی A. melanolepis و A. aucheri

به‌ترتیب با ۲۶ و ۴۵ گونه، غلبه دارد. نتایج حاصل از انالیز شاخص‌های عده تندی (سیمسون و شانون-والنر) و

پیک‌پکتی (سیمسون و اسیمید-والسون) در روش‌گاه‌های موردصلاح‌یافته نشان داد که شاخص‌های سیمسون تفاوت معنی‌داری

در گونه‌های همه یک دوره گونه دارند. حتی در افزایش و جهاد جغرافیایی متفاوت، اختلاف معنی‌داری دارند. با استفاده از نتایج این تحقیق، عالیه بر تولید اطلاعات پایه و شناختی از روش‌گاه‌های گونه‌های با پراکنش جغرافیایی ایران- تورانی A. melanolepis و A. aucheri

گونه‌های استان‌های شبه استفاده کرد.

وژدها کلیدی: استان ارومیه، پراکنش جغرافیایی، تعیین گونه‌های، دامنه، شکل زیستی، فلور

مقدمه

تکنیک فلورسنتیک یک اجتماع گیاهی به‌عنوان نتیجه تأثیر عوامل محیطی روی گیاهان و واکنش گیاهان در ارتباط با پتانسیل اکولوزیک آن‌ها، نموده می‌کند. از سوی دیگر، به‌وجود آوردن عوامل مخرب در انقراض برخی از گونه‌های حاصل اهمیت، شناسایی بروز سریع‌تر آن‌ها در مناطق مختلف و برنامه‌ریزی در جهت حفظ آن‌ها ضرورت می‌یابد. با توجه به اینکه بعضی از مهاجرت‌های محیطی‌ساز هر منطقه گیاهی می‌باشند که بدون حضور آنها تمامی اجزای زندگی محیط‌زیست و بی‌خاکی و عناصر غیرزندگی آن‌ها گرفتار می‌شوند، حفاظت از تنوع زیستی به‌خخصوص تنوع گیاهی، به‌عنوان یکی از اهداف مهم مدیریت مناطق مختلف می‌باشد. همچنین، لازم است مدیریت تنوع گیاهی مناطق مختلف شامل آن است. چراکن به منابع این اگاهی می‌توان استراتژی‌های لازم برای مدیریت منطقه در پیش گرفت (قلی‌پور، ۱۳۸۹). مطالعه و شناسایی پوشش گیاهی و بررسی پراکنش جغرافیایی گیاهی یک منطقه، اساس بررسی‌ها و تحفظات پوشش‌نشانی است و همچنین راهکاری مناسب برای تعیین ظرفیت اکولوزیک منطقه از سوی جنبه‌های اقتصادی و همکاری (۱۳۹۲).

کورولوزی (پراکنش جغرافیایی)، توصیف نحوه انتشار گیاهان و تحمیل و تفسیر آن‌ها (نیشابوری، ۱۳۸۹). با توجه به گستره‌ای اکولوزیک محدودی‌های هرگونه پاهای مفید بررسی بهتری از عرصه‌های پراکنش، مفاهیم مختلف کرده‌اند که روش تسهیل‌بندی نواحی جغرافیایی بزرگ، از مداخلات روش‌های مبتنی بر تنی یعنی پراکنش جغرافیایی گونه‌های

گیاهی است (Zohary et al., 1986-1990). از سوی دیگر، مطالعه پوشش گیاهی نظیر شکل گونه‌ها در حالت مناظر اکولوزیکی مانند حفاظت اکولوزیکی و مدیریت منابع طبیعی مفید بوده و براساس نتایج به‌سیاست‌های منطقه‌ای را بر پایه‌ای کرد (ستنی‌چی و متفقین، ۱۳۸۹).

Warming. (۱۳۸۹) از تأثیرات زیست‌فکری اولین بار توسط وارمینگ در سال ۱۹۸۵ مطرح شد. شکل زیستی هرزونه گیاهی و ویرژنیا های است که آن گونه براساس سازش و انطباق با محیط از خود
بروز می‌دهد و تفاوت شکل زیستی جوامع مختلف گیاهی ساختار آن‌ها را نشان می‌کند. گیاه‌گی را بکار بردن یک‌پیمانها، پاسخ یک‌پیمان به متغیرهای محیطی داده و تأثیر یک‌پیمان روی فرآیندهای عمدهی عمدی مختلف انرژی انسان لقب‌داران از طولانی دارد و تاکنون پوشش گیاهی انطوای متعددی از ایران توسط پژوهشگران مختلف (صاری و همکاران، ۱۳۹۲، حیبسی و همکاران، ۱۳۹۲، سخنور و همکاران، ۱۳۹۳، ۱۳۹۴ و ۱۳۹۵) به روش فلوروسنیک بررسی شده است. تونژ هفتمی است که به محدوده تغییرات و یا تفاوت‌های میان برخی گروه‌های اشاره می‌کند. درواقع تونژ واریاژ است که پرای مشخص کردن پیچیدگی یا عوامل توانایی موجودات یک جامعه استفاده می‌شود (اجتهادی و همکاران، ۱۳۸۵). تنوع گونه‌ای یکی از سطوح تنوغ زیستی، بخش عظیمی از آن را به‌وجود کرده که از طرفی می‌باشد (Kenny and Krebs، ۱۹۶۳) از انجاکه حفاظت همه‌جانبه از اکوسیستم‌های مرتقب مسئول مدیریت بر مبانی حفظ و نگهداری از تنوع گونه‌ای موجود در آن‌هاست. این امر با شناخت بازسازی و افزایش نوع گونه‌ای محقق می‌شود. تنوع گونه‌ای به‌طور وسیع در مطالعات پوشش گیاهی و ارزیابی زیست‌محیطی به‌عنوان یکی از شاخص‌های مهم و سریع در تعیین وضعیت اکوسیستم‌ها مورد استفاده قرار می‌گیرد (صدامی، ۱۳۸۶). چالا و همکاران (۲۰۰۸) در بررسی تنوع گونه‌های چمنی در طول گردان ارتقاء در غرب هیمالیا نشان دادند که مقایسه شاخص‌های تنوغ با افرادی ارتفاع، اندام و نوید صومعی داشته (ارتفاعات میابی، سیس ورند نبوده (ارتفاعات بالا) نشان می‌دهد، نمایش ارتفاعی و همکاران (۱۳۹۱) در ارزیابی اثر جهت دامنه و شدت چرا بر شاخص‌های تنوغ گونه‌ای در منطقه کرسک شهره، عده معنی‌دار شاخص‌های تنوغ و بکار رفتگی در موفقیت ایجاد شدند. در دهه اخیر، پژوهش‌های دریافت‌می‌شوند مطالعات فلوروسنیکی انطوای مشابه در استان اردبیل صورت گرفته است که ازجمله می‌توان به مطالعات علمی مطبوع و همکاران (۱۳۹۴) در منطقه فندق‌قلی، هریسان نمین، شریفی و همکاران (۱۳۹۱) در سطح روش‌هاگی- چمن‌سازی سبزی- احمدآدلی و همکاران (۱۳۹۱) در سطح سه سامان روش‌هاگی ارتفاع‌های پایین جنب شرقی سبزی که ارتفاع‌ها ارتفاع روش‌گاهی باکاتوره نوار می‌باشد، اشاره کرد. حضور گیاه درنیا با توجه به دانش‌الندازه بودن و همچنین گسترشده شدن بر سطح خاک، از نظر حفظ منابع آب‌و‌خاک، ارزیابی و پیش‌بینی این است. درمینه- زارع روی خاک‌های قبری و با مواد آلی کم می‌وزند. به‌طوری که بی‌شیوه‌های تند، دامنه‌های کوهستانی و دشتی‌های با خاک‌های صنیفاً تغییرات جوگردها این گیاه می‌باشد (خانیور Artemisia aucheri و Artemisia melanolepis Boiss.) اردستانی و همکاران، ۱۳۸۷، دو گونه از گونه‌های شاخص‌های خاک‌های از سبزی جنوب شرقی می‌باشد. همچنین گونه اول یکی از Boiss.
نشریه حفاظت زیست بوم گیاهان/ دوره ششم، شماره سیزدهم، پاییز و زمستان ۱۳۹۷

درمنهای بویی ایران و سیلان می‌باشد و شناخت کافی از روش‌ها و فلور همراه این گونه موجود نمی‌باشد. به‌علاوه این مقاله بخشی از طرح کلی شناخت روش‌ها و فلور درمانه در استان اردبیل می‌باشد (زارع حصاری و همکاران، ۱۳۹۳، امیدی و همکاران، ۱۳۹۴، قربانی و همکاران، ۱۳۹۴) که به‌خشی از هدف این شناخت فلور و مقایسه نوع فلور روش‌ها مختلف درمانه به‌دست‌آمد. لذا در این پژوهش گونه‌های همراه به‌بیان شناخت نتایج و مقایسه گونه‌های همراه A. aucheri و A. melanolepis این دو گونه در راستای تکمیل مطالعات مذکور انجام گرفته است.

مواد و روش‌ها

منطقه مورد مطالعه: این تحقیق پس از پاسداشتی میدانی و براساس حضور دو گونه A. aucheri و A. melanolepis در ۵۷ درصد دامنه جنوبی-شرقی سیلان در مختصات جغرافیایی ۴۳°۵۰′ تا ۱۱°۵۴′ طول شرقی و ۵۰°۲۹′ تا ۵۰°۴۲′ عرض شمالی انجام گرفت. سایت‌های انتخاب‌شده تحت عنوان روش‌گاه‌های این دو گونه از مراعت نواحی سردسری و پیلاقی (بخشی از بیلاق عشایر شاهسون) مراتب سیلان و گزار محصول و ارزش بالا از آن رستگاه‌های فوقال‌قدرت در دامنه جنوبی-شرقی سیلان بین ۷ کیلومتر و ۸۴ کیلومتر در ارتفاع‌های محدود مطالعه ۱۸۵۷ تا ۲۱۵۳ متر است. مناطقی با توجه به ارتفاع‌ها و فاصله‌های مورد پژوهش با ورزشکاران و گردشگران بازدارگان است. مطالعات به‌طور متوسط بین ۴۹۴ تا ۵۰۱ میلی‌متر در نوسان است. متوسط دمای متوسط ۳۷/۵ تا ۱۳/۱ درجه سانتی‌گراد متوسط دماهای اولیه و همکاران، ۱۳۹۲، بررسی اولیه و براساس اقلیم‌ها، A. aucheri اطلاعات رشد و روند‌های استان‌های ایرانی و سیستانی‌ها (نوع اصلی) این گونه در سباده‌های رود پایین‌ترین استان‌ها با حضور A. aucheri از بخشی از این گونه که در منطقه نزدیک‌ترین استان‌های سیستانی رژه‌پوشی این گونه در منطقه نزدیک‌ترین استان‌های سیستانی رژه‌پуш
اردووان قربانی و مریم مولانا شاماسبی

شکل 1 - موقعیت روشگاه A. melanolepis و A. aucheri

شکل 2 - نمودار آماری روشگاه براساس داده‌های هوشمندی نزدیک‌ترین ایستگاه سیستمیک اردیبل (میانگین 25 سال) به سایت‌های با حضور A. melanolepis و A. aucheri در منطقه جنوبشرق سبلان (فرازی و همکاران، 1392)

روش تحقیق: محدوده جغرافیایی منطقه مطالعاتی با استفاده از نقشه‌های توپوگرافی منطقه و پس از ب روشن شدن و تعیین محدوده روشگاه‌های سبلان، تعیین شد که 4 سایت نمونه‌برداری با در نظر گرفتن چگالی دسترسی و حضور گونه‌های مورد مطالعه نهایی شد. سپس در هر سایت، 5 ترانسکت 100 متری به فاصله ۵۰ متری از یکدیگر
نشانه حفاظت زیست‌بوم گیاهان/دوره ششم، شهره سیزدهم، پاییز و زمستان ۱۳۹۷

بهصورت تصمیمی - سیستماتیک مستقرشده و در طول ترسکت‌ها با استفاده از پلاک ۱ متراکمی نسبت به برداشت نمونه به تعداد ۱۰ پلاک و به فاصله ۱۰ متری از یکدیگر در ارديبهشت و خرداد (در مرحله گل‌دهی و سنبل دهی گونه‌ها) اقدام گردید. به‌منظور نمونه‌برداری از مناطق کلیک روشگاه و با در نظر گرفتن و سطح روشگاه‌ها و تعداد نمونه کافی برای هر سایت به تعداد ۵۰ پلاک، در مجموع این تعداد ترسکت، فاصله و پلاک در نظر گرفته شد. هرچند که به‌منظور بررسی روزانه فلور نیاز است پایش میدانی در مقاطع زمانی مختلف انجام گیرد، ولی جهت مقایسه ترکیب و تندو فلور در دو روشگاه گونه مورد مطالعه از لحاظ متروپاری بوده و معمولاً در مطالعات متروپاری در یک مقطع زمانی که اگر گونه‌ها به مرحله گل‌دهی و سنبل دهی رسیده‌اند انجام می‌شود، از این روی، در این مطالعه در زمانی دوردها ذکر شده است که از لحاظ ترکیب و تندو با دیدگاه متروپاری و مقایسه روشگاه گونه‌ها بررسی شده است. ابعاد پلات با توجه به ساختار پوشش گیاهی موجود در سایت‌های نمونه‌برداری و نیز مطالعات گذشته (الهامدی و همکاران، ۱۳۹۲؛ قربانی و همکاران، ۱۳۹۴) که پلاک یک متراکمی را برای اندازه‌گیری پوشش گیاهی سیستم مناسب عنوان کرده‌اند، انتخاب شد. در داخل پلات‌ها تراکم تک‌کننده گونه‌ها جمع‌آوری و سپس این گونه‌ها به‌صورت نمونه‌های هریاریهای جمع‌آوری و هریاریوم دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی منطقه‌ای شدند. موضع‌گیری نقطه نمونه‌برداری با استفاده از دستگاه موضع‌گیری باب جهانی (GPS) فلور. در مجموع، گونه‌های ۲۰۰ پلاک نمونه‌برداری با استفاده از منابع اصلی کورورفیته‌های ایران (فهرمان، ۱۳۷۶، گونه‌های ایران (مصوبه ۱۳۶۵، ۱۹۸۴-۱۳۸۴، قربانی، ۱۹۸۸) ایرانیکا، ۱۹۸۳-۱۳۶۸، فلور ترکیه)، Reckinger (۱۹۸۹)، Davis (۱۹۸۸) و Flora Iranica (۱۹۶۳-۱۳۶۸) مورد شناسایی قرار گرفت. اختصار اسمی مؤلفان گونه‌ها با نام‌های داخلی ماهی گیاهان ۱ یکسان بود. برای این نماد گونه نمونه‌برداری با استفاده از تقسیم نمونه به تعداد چندین بخش آمد (۱۹۹۷) براساس روش‌های نقاشی زیستی گیاهان بر مبنای موضع‌گیری جوانه‌ها در پنج تیپ مشخصی، بیولوژی شیمی فرمول، ترویج روایتی، ترویج نیوتنیتی، هم گروه‌یافتی، کمکی و فلورتیفی طبیعی، دید در تبعیض پایان جغرافیایی، از منابع و متقابل مختلف منتشرشده در این زمینه (شریفی و همکاران، ۱۳۹۱؛ قربانی و همکاران، ۱۳۹۴، ۱۳۹۲)، احمدی و همکاران، ۱۳۹۲، سیمی و همکاران، ۱۳۹۳، همکاران، ۱۳۹۲)، استفاده شد. برای بررسی تنوو و یکپارچگی گونه‌های از شامل شاخه‌های سیسیمیوس، شالون، واینر، سیسیمیوس و اسپیت - ویلسون استفاده شد (اجتهادی و همکاران، ۱۳۸۸) نقشه مدل رقیقوی ارتقای با استفاده از

*http://www.ipni.org (IPNI)
نتیجه شد. نقشه‌های شیپ و جهت جغرافیایی از مدل رقیمی ارتفاع به‌دست‌آمده و ArcGIS، سپس با افزودن نقاط ثابت‌شده به‌وسیله GPS، پارامترهای شیب و جهت جغرافیایی برای سایت‌های مطالعاتی استخراج شد. با توجه به شرایط پیست و بندی منطقه و ارتفاع اینکه عوازل پیست و بندی مانند ارتفاع، شیب و جهت جغرافیایی و همچنین بارندگی و دما می‌توانند در تعیین خصوصیات رویشگاهی و تنویع گیاهی مؤثر باشند، لذا تنویع و یکنویختی گونه‌های در هر رویشگاه بر اساس طبقات ارتفاع، شیب و جهت جغرافیایی به ترتیب در ۳، ۴ و ۵ طبقه باهم مقایسه شدند.

برای محاسبه تنویع و یکنویختی، تراکم گونه‌ها به‌عنوان متغیر در شاخص‌های (سیمپسون، شانون، Kenny and) Ecological Methodology واینر، سیمپسون و اسمیت- ویلسون به‌نرم‌افزار SPSS

جدول ۱- شاخص‌های تنویع و یکنویختی گونه‌های مرحله‌گذاری در منطقه

<table>
<thead>
<tr>
<th>شاخص</th>
<th>فرمول</th>
<th>دامنه</th>
</tr>
</thead>
<tbody>
<tr>
<td>تنویع</td>
<td>۱-D = ۱ - Σ(pi)</td>
<td>۰-۱</td>
</tr>
<tr>
<td>سیمپسون</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شانون- واینر</td>
<td>=HΣ ln’ (pi)(Log p)</td>
<td>۰-۵/۰</td>
</tr>
<tr>
<td>یکنویختی:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سیمپسون</td>
<td></td>
<td></td>
</tr>
<tr>
<td>اسمیت- ویلسون</td>
<td>=Ei/s ۱/D ۵</td>
<td>۰-۱</td>
</tr>
</tbody>
</table>

س=تعداد افراد=۱۰۰۰ نسبت تعداد یکگونه به کل گونه‌ها=۱، تعداد کل گونه‌ها=8

و ارد، محاسبه و آنالیز گردید. سپس اخلاق معنی‌داری بین سایتهای با حضور دو گونه Krebs، ۲۰۰۱ A.melanolepis و A.aucheri به روش دانک در نرم‌افزار SPSS مورد تجزیه و تحلیل قرار گرفته و از نظر اختلاف معنی‌داری باهم مقایسه شدند.
نتیجه حفاظت زیست‌بوم گیاهان/ دوره ششم، شماره سیزدهم، یازدهم و زمستان 1397

نتایج

در منطقه‌های جنوب شرقی سبلان A.melanolepis و A.aucheri در منطقه‌های جنوب شرقی سبلان A.melanolepis و A.aucheri منجر به شناسایی 47 گونه گیاهی مختلف به 32 نشر و 41 نشر گردید (جدول 2). بیشتر گونه‌های جنوب شرقی سبلان A.melanolepis و A.aucheri گیاهی مختلف به ترکیه hvor Poaceae گروه بیشترین تعداد گونه را به خود اختصاص داده‌اند. نمو گونه‌های با نسبت گونه به سلسله مطلاعاتی برای 1/4 می‌باشد. مطالب شکل (B) هر فرم یا زیستی همی‌کریپتوتایف با درصد 84 درصد کامکسیت با 1/5 درصد، کامکسیت با 1/1 درصد و زنوتایف با 5 درصد در سطح منطقه مورد مطالعه گسترده‌است. دارند. شکل (A) 3 پراکنش جغرافیایی گونه‌های شناسایی شده را نشان می‌دهد. در مجموع از 84 گونه، 76/9 درصد گونه‌ها به ناحیه رویشی ایران- تورانی 10/10 درصد بصورت مشترک با ناحیه رویشی اروپا-اسپانیا- ایران- تورانی و 2/3 درصد به سایر توابع تعلق دارند.

از مجموع 84 گونه شناسایی شده، 38 گونه در سایت‌های با حضور Henrardiapersica (Boiss.) روش داشته‌اند. گونه‌های A. aucheri Stachys iberica M. B. subsp. Thymus kotschanus Boiss.& Hohen. C.E. Hubb. Allium monophyllum Vved. Astragalus peristerus Bunge. .geoaria Rech.f. در رویش‌های آب و هوایی مکرونون aviculare L. و Potentilla bifurcal L. مشترک گسترده‌ترند. درصد 84 درصد گونه‌های همینه‌کریپتوتایفی با درصد 13 درصد A.melanolepis و درصد 12 درصد A.aucheri ترکیبی، 5 درصد کامکسیت و 5 درصد زنوتایف یا داده می‌باشد. گونه‌های ترکیبی، 5 درصد کامکسیت و 5 درصد زنوتایف یا داده می‌باشد. گونه‌های ترکیبی، 5 درصد کامکسیت و 5 درصد زنوتایف یا داده می‌باشد. گونه‌های ترکیبی، 5 درصد کامکسیت و 5 درصد زنوتایف یا داده می‌باشد. گونه‌های ترکیبی، 5 درصد کامکسیت و 5 درصد زنوتایف یا داده می‌باشد. گونه‌های ترکیبی، 5 درصد کامکسیت و 5 درصد زنوتایف یا داده می‌باشد.

طبق جدول 3، نتایج حاصل از آنالیز شاخص‌های عدید تیپ (سیمپسون و شابون و واینر) و A.aucheri و A.melanolepis در رویش‌گاه‌های شرق سبلان نشان داد که شاخص تیپ سیمپسون در سایت‌های مختلف، اختلاف
جدول 2- فهرست گونه‌های روبیگاه‌هایی در A.melanolepis و A.aucheri در منطقه جنوب شرقی سیلان

<table>
<thead>
<tr>
<th>نام علمی</th>
<th>نام فارسی</th>
<th>شکل</th>
<th>پراکش</th>
<th>گروه‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervariacervifolia(C.A.Mey.) Pimenov.</td>
<td>-</td>
<td>He</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eryngium biliarderei F.Delaroch</td>
<td>-</td>
<td>Zol</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eryngium bungei Boiss.</td>
<td>-</td>
<td>Zol خراشای</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Achillea vermicularis Trin.</td>
<td>-</td>
<td>پودران</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Artemisia aucheri Boiss.</td>
<td>-</td>
<td>درمنه کوهی</td>
<td>Ch</td>
<td>IT-ES</td>
</tr>
<tr>
<td>Artemisia campestris Vill.</td>
<td>-</td>
<td>درمنه بابونهایی</td>
<td>Ch</td>
<td>-</td>
</tr>
<tr>
<td>Helichrysum globiferum Boiss.</td>
<td>-</td>
<td>گل بی‌مگ</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Tanacetum chlorophyllum Sch.Bsp.</td>
<td>-</td>
<td>عرقی</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Alyssum desertorum Stapf.</td>
<td>-</td>
<td>قدوره پیاپای</td>
<td>Th</td>
<td>IT-ES</td>
</tr>
<tr>
<td>Erysimum cressipes Fisch. &C.A. Mey.</td>
<td>-</td>
<td>گازشتر تُنگ</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Asyneuma virgatum Bornm.</td>
<td>-</td>
<td>گل چاک</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Arenaria graminea C.A. Mey.</td>
<td>-</td>
<td>مرجانی سه‌نده</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Silene pungens Boiss.</td>
<td>-</td>
<td>سیلن نش‌دار</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Convolvulus arvensis L.</td>
<td>-</td>
<td>یپک سری ای</td>
<td>He</td>
<td>IT-ES</td>
</tr>
<tr>
<td>Pseudosedum multicaule (Boiss. &Buhse)</td>
<td>-</td>
<td>شه‌پنار</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Euphorbia descipiens Boiss. &. Buhse.</td>
<td>-</td>
<td>فرفونین فریبند</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Astragalus glaucanthus Fisch.</td>
<td>-</td>
<td>گوئن</td>
<td>Ch</td>
<td>IT</td>
</tr>
<tr>
<td>Astragalus macroplumatus Sirj.</td>
<td>-</td>
<td>گوئن</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Astragalus rhodosemius Boiss. &Hausk.</td>
<td>-</td>
<td>گوئن</td>
<td>Ch</td>
<td>IT</td>
</tr>
<tr>
<td>Medicago sativa L.</td>
<td>-</td>
<td>پویچه</td>
<td>He</td>
<td>IT-ES,M,SS</td>
</tr>
<tr>
<td>Bellevia macrobotrys Boiss.</td>
<td>-</td>
<td>تمکین</td>
<td>Ge</td>
<td>-</td>
</tr>
<tr>
<td>Marrubium cuneatum [Solan!]</td>
<td>-</td>
<td>تفصیل حلق</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Marrubium propinuam Fisch. & C. A. Mey.</td>
<td>-</td>
<td>گوسین به‌پنیر</td>
<td>He</td>
<td>-</td>
</tr>
<tr>
<td>Phlomis herbacea L.</td>
<td>-</td>
<td>مریم گلی</td>
<td>He</td>
<td>IT,M</td>
</tr>
<tr>
<td>Salvia aethiopis L.</td>
<td>-</td>
<td>بیشک</td>
<td>Ch</td>
<td>IT</td>
</tr>
<tr>
<td>Scutellaria sosnowskyi Takht.</td>
<td>-</td>
<td>چای کوهی</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Stachys lavandulifolia Vahl.</td>
<td>-</td>
<td>مریم غنده</td>
<td>Ch</td>
<td>IT,M</td>
</tr>
<tr>
<td>Teucrium polium L.</td>
<td>-</td>
<td>خیشتر کَریم</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Papaver bracteatum Lindl.</td>
<td>-</td>
<td>پاره‌گَنگ</td>
<td>He</td>
<td>IT,ES</td>
</tr>
<tr>
<td>Plantago atrata Hoppe.</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acantholimon sahendicum Boiss. & Buhse.</td>
<td>-</td>
<td>دلبا ریحنس</td>
<td>Ch</td>
<td>IT</td>
</tr>
<tr>
<td>Agropyron desertorum (K.Richt.) anSchult.</td>
<td>-</td>
<td>چمن گندمی</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Dactylis glomerata L.</td>
<td>-</td>
<td>علف باخ</td>
<td>He</td>
<td>IT, M,ES</td>
</tr>
<tr>
<td>Eremopyrum distans (K.Koch) Nevski</td>
<td>-</td>
<td>بیابان گندم</td>
<td>Th</td>
<td>IT</td>
</tr>
<tr>
<td>Poa longifolia A.Rich.</td>
<td>-</td>
<td>چمن سنابی</td>
<td>He</td>
<td>-</td>
</tr>
<tr>
<td>Poa sinaica Steud.</td>
<td>-</td>
<td>گل ماهور</td>
<td>Ge</td>
<td>IT,SS</td>
</tr>
<tr>
<td>Verbasum sp.</td>
<td>-</td>
<td>سیب‌بلور</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Veronica denudateAlbov.</td>
<td>-</td>
<td>سیب‌بلور</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>نام علمی</td>
<td>نام فارسی</td>
<td>شکل</td>
<td>پراکنش</td>
<td>جغرافیایی</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------</td>
<td>------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>A. melanolepis</td>
<td>हेम्पशर्क</td>
<td>He</td>
<td>IT</td>
<td>ES, IT</td>
</tr>
<tr>
<td>Apium nodiflorum (L.) Lag.</td>
<td>एपियुम नोडिफ्लोरम</td>
<td>एपियुम नोडिफ्लोरम</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Anthemis atropatana Iranshahr</td>
<td>ईंथमिझ आट्रोपटना</td>
<td>ईंथमिझ आट्रोपटना</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Artemisia melanolipis Boiss.</td>
<td>अर्टेमिझिया मेनालोपिस</td>
<td>अर्टेमिझिया मेनालोपिस</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Centaurea thiophanthe C.A. Mey.</td>
<td>सेंटार्य़ीआ थिओफानथ</td>
<td>सेंटार्य़ीआ थिओफानथ</td>
<td>He</td>
<td>IT, ES, M</td>
</tr>
<tr>
<td>Helichrysum psychrophilum Boiss.</td>
<td>हेलिक्रियस सीचरफिलम</td>
<td>हेलिक्रियस सीचरफिलम</td>
<td>He</td>
<td>IT, ES</td>
</tr>
<tr>
<td>Inula helenium L.</td>
<td>इनुला हेलिमिनियम</td>
<td>इनुला हेलिमिनियम</td>
<td>He</td>
<td>IT, ES</td>
</tr>
<tr>
<td>Leontodon asperrimus (Willd.) Boiss.</td>
<td>लिओंटोडन अस्पेर्मिस</td>
<td>लिओंटोडन अस्पेर्मिस</td>
<td>He</td>
<td>IT, ES</td>
</tr>
<tr>
<td>Scorzonera grossheimi Liprich. & Vassilkz.</td>
<td>स्कोरजोनेरा ग्रॉसहाइमी</td>
<td>स्कोरजोनेरा ग्रॉसहाइमी</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Tanacetum polychaleum Sch.Bip.</td>
<td>तानासेटम पोलाचेलम</td>
<td>तानासेटम पोलाचेलम</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Tragopogon gyllerianus Boiss.</td>
<td>ट्रागोपोगन ग्यलरियानस</td>
<td>ट्रागोपोगन ग्यलरियानस</td>
<td>He</td>
<td>IT, ES</td>
</tr>
<tr>
<td>Alyssum bracteatum Boiss. & Buhs.</td>
<td>अल्यसम ब्रॅक्टेटियम</td>
<td>अल्यसम ब्रॅक्टेटियम</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Nonnea pescica Boiss.</td>
<td>नोन्नेआ पेस्सेका</td>
<td>नोन्नेआ पेस्सेका</td>
<td>He</td>
<td>IT, ES</td>
</tr>
<tr>
<td>Onosma sp.</td>
<td>ओनोस्मा स्प</td>
<td>ओनोस्मा स्प</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Campanula stevenii M.B.</td>
<td>क्यम्प्यूल्या स्टीवनी</td>
<td>क्यम्प्यूल्या स्टीवनी</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Atriplex dianthoides Sm.</td>
<td>ट्रिप्लेक्स डियंथोयड़</td>
<td>ट्रिप्लेक्स डियंथोयड़</td>
<td>He</td>
<td>IT, ES</td>
</tr>
<tr>
<td>Minuartia brevis (Boiss.) Parsa</td>
<td>मिनुर्तिया ब्रेविस</td>
<td>मिनुर्तिया ब्रेविस</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Sedum annuum L.</td>
<td>सेदम एन्नुम</td>
<td>सेदम एन्नुम</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Astragalus eugobromus Boiss. & Hohen.</td>
<td>अस्ट्रागालस एयूकोब्रोमस</td>
<td>अस्ट्रागालस एयूकोब्रोमस</td>
<td>He</td>
<td>IT, ES, M</td>
</tr>
<tr>
<td>Astragalus cordatus Bunge.</td>
<td>अस्ट्रागालस कोर्डातस</td>
<td>अस्ट्रागालस कोर्डातस</td>
<td>He</td>
<td>IT, ES, M</td>
</tr>
<tr>
<td>Onobrychis cornuta (L.) Desv.</td>
<td>ओनोब्राइक्स कर्नूटा</td>
<td>ओनोब्राइक्स कर्नूटा</td>
<td>He</td>
<td>IT, ES, M</td>
</tr>
<tr>
<td>Oxytropis persica Boiss.</td>
<td>ओक्यट्रोपिस पर्सिका</td>
<td>ओक्यट्रोपिस पर्सिका</td>
<td>He</td>
<td>IT, ES, M</td>
</tr>
<tr>
<td>Trifolium montanum L.</td>
<td>ट्रिफोलियम मॉंटननम</td>
<td>ट्रिफोलियम मॉंटननम</td>
<td>He</td>
<td>IT, ES, M</td>
</tr>
<tr>
<td>Ballota nigra subsp. anatifolia P.H. Davis.</td>
<td>बैलोटा निग्रा सब्स्प. ऐनाटिलिया</td>
<td>बैलोटा निग्रा सब्स्प. ऐनाटिलिया</td>
<td>He</td>
<td>IT, ES, M</td>
</tr>
<tr>
<td>Lamium album L.</td>
<td>लामियम अल्बम</td>
<td>लामियम अल्बम</td>
<td>He</td>
<td>IT, ES, M</td>
</tr>
<tr>
<td>Papaver rhoes L.</td>
<td>पपुवरेर रहौस</td>
<td>पपुवरेर रहौस</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Agropyron taui Boiss. & Balansa.</td>
<td>एग्रोप्यूरन तौइ</td>
<td>एग्रोप्यूरन तौइ</td>
<td>He</td>
<td>IT, ES, M</td>
</tr>
<tr>
<td>Alopecurus textilis Boiss.</td>
<td>एलोपेकरस टेक्स्टिलिस</td>
<td>एलोपेकरस टेक्स्टिलिस</td>
<td>He</td>
<td>IT, ES, M</td>
</tr>
<tr>
<td>Eragrostis curvula (Schrad.) Nees</td>
<td>एराग्रोस्टिस कर्वुला</td>
<td>एराग्रोस्टिस कर्वुला</td>
<td>He</td>
<td>IT, ES, M</td>
</tr>
<tr>
<td>Festuca ovina L.</td>
<td>फेस्तुका ऑविना</td>
<td>फेस्तुका ऑविना</td>
<td>He</td>
<td>IT, ES, M</td>
</tr>
<tr>
<td>Poa compressa L.</td>
<td>पोआ क्रिम्प्सेसा</td>
<td>पोआ क्रिम्प्सेसा</td>
<td>He</td>
<td>IT, ES, M</td>
</tr>
<tr>
<td>Ranunculus salubranicus Mobeyen & Z. Maleki</td>
<td>रानुंक्लस साल्बुरानिकस</td>
<td>रानुंक्लस साल्बुरानिकस</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Galium verum L.</td>
<td>गलियम वेरम</td>
<td>गलियम वेरम</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Thesium ramosum Hayne</td>
<td>थेशियम रामोसम</td>
<td>थेशियम रामोसम</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Linaria dulmatica (L.) Mill.</td>
<td>लिनरिया दुल्माटिका</td>
<td>लिनरिया दुल्माटिका</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Linaria grandiflora Desf.</td>
<td>लिनरिया ग्रैंडाइफ्लोरा</td>
<td>लिनरिया ग्रैंडाइफ्लोरा</td>
<td>He</td>
<td>IT</td>
</tr>
<tr>
<td>Pedicularis sithophorii Boiss.</td>
<td>पेडीक्यूलरिस सिथोफोरियी</td>
<td>पेडीक्यूलरिस सिथोफोरियी</td>
<td>He</td>
<td>IT, ES, M</td>
</tr>
<tr>
<td>Veronica orientalis Mill.</td>
<td>वेरोनिका ऑरिएंटाळिस</td>
<td>वेरोनिका ऑरिएंटाळिस</td>
<td>He</td>
<td>IT</td>
</tr>
</tbody>
</table>
در منطقه جنوب شرق سیستان بر اساس روش رانکری A. *melanolepis* و A. *aucheri* های

<table>
<thead>
<tr>
<th>گونه‌های مشترک</th>
<th>نام علمی</th>
<th>نام فارسی</th>
<th>تیره</th>
<th>شکل</th>
<th>جغرافیایی زیستی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allium monophyllum Vved.</td>
<td>Alliaceae</td>
<td>پیاز نک برگ</td>
<td>Ge</td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Asteragalus (Rhacophorus) peristerus Bunge.</td>
<td>Fabaceae</td>
<td>گون</td>
<td>Ch</td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Stachys iberica M.B. subsp. georgica Rech. f.</td>
<td>Lamiaceae</td>
<td>سنبله‌ای</td>
<td>Ch</td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Thymus kotschyanus Boiss. & Hohen.</td>
<td>Lamiaceae</td>
<td>اویشن</td>
<td>Ch</td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Henradia persica (Boiss.) C.E. Hubb.</td>
<td>Poaceae</td>
<td>گندم آرازی</td>
<td>Th</td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Polygonum aviculare L.</td>
<td>Polygonaceae</td>
<td>علف هفت بند</td>
<td>Th</td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Potentilla bifurcal L.</td>
<td>Rosaceae</td>
<td>برگ جنگه</td>
<td>He</td>
<td>IT</td>
<td></td>
</tr>
</tbody>
</table>

Th: Therophyte, Ge: Geophyte (Chryptophyte), He: Hemicryptophyte, Ch: Chamaephyte, ES: Euro-Siberian, IT: Irano-Turanian, M: Mediterranean, SS: Saharo-Sindian, Pl: Polyregional
تشریح حفاظت زیست بوم گیاهان/ دوره ششم، شماره سیزدهم، پاییز و زمستان ۱۳۹۷

شکل ۴- توزیع جغرافیایی (A) و اشکال زیستی (B) در سایت‌های روبشکاه جنوب شرق سیلان A.melanolepis

شکل ۵- توزیع جغرافیایی (A) و اشکال زیستی (B) در سایت‌های روبشکاه Sیلان A.aucheri
جدول ۳: میانگین و اختلاف معنی‌دار در مقایسه سایت‌های انواع و یکنوشته‌ی در روش‌های

نام	ویژگی‌های متغیر	روش‌گاه	پوشش	سایت‌های مطلوبی
A. aucheri	نشانه‌های انواع	۱۰۵۲	ارقام	۱۰۵۳
A. melanolepis	سایت‌های انواع	۱۰۵۴	ارقام	۱۰۵۴

بحث و نتیجه‌گیری

نتایج نشان داد که ۸۴ گونه گیاهی متعلق به ۲۳ تیره و ۶۱ جنس در سایت‌های با حضور A. aucheri و A. melanolepis در منطقه جنوب شرق سیستان در سطح ۱۰۰ متری (۲۰۰) پلات یک متغیری کشت دادند. حدود ۱۹۵ درصد (۱۶) گونه از گونه‌ها با گونه‌های معروف شده توسط احمدآبادی و همکاران (۱۳۹۴) ۱۳۷ درصد (۱۱) گونه بیشتر معرف شده‌های کشت در بزرگترین توسط شریفی و همکاران (۱۳۹۱) از چندزیای سیستان و ۸۵ درصد (۷) گونه با بررسی انجام شده توسط
نشریه حفاظت زیست بوم گیاهان/ دوره ششم، شماره سیزدهم، پاییز و زمستان 1397

عظمی و همکاران (1390) در منطقه فندق‌لوی اردبیل مشابه است. این تالیف نشان‌دهنده آن است که هرچند این مطالعات در سطح استان اردبیل انجام شده است و حین در سطح سیستان، ولی به لحاظ تندب غول‌کشی گونه‌های متنوعی در سطح مرتفع انگار دارد و پژوهش دارد مطالعات این چنین در مرحله‌های دگر استان اردبیل و سیستان انجام گیرد تا نشانه‌های کامی از فلوس استان اردبیل و کوی سیستان به دست آید. به‌پیش‌تر تراکم گونه‌های گیاهی موجود با ترتیب مربوط به تیره‌های Lamiaceae، Poaceae، Fabaceae، Asteraceae در مطالعات که احمدی‌نژاد و همکاران (1392) در سامان عربی سه روشی آورند: لاطین و ویژگی‌ها واقع در جنوب شرقی سیستان و نیز شرقی و همکاران (1391) در دامنه‌های شمالی و شرقی سیستان انجام دادهاند. نیز به‌عنوان تیره غلبه‌اند شده است. احمدی‌نژاد و همکاران (1394) و دفتر خوی و همکاران (1390) چالیسبی این تیره را نشان دهنده تخریب ترکب گیاهی می‌دانند و از سوی دیگر، حضور بالتکه و کندیان در منطقه نشان دهند که تخریب دانسته و دانسته می‌کنند که تخریب به‌گونه‌ای نبوده که کل گونه‌های بالارز را از بین برده است. A. melanolepis (دبیس، 1988-1989) در منطقه کوه‌های گیاهی تیره Asteraceae نیز نشان دهنده تیره به‌شمارانه‌کردنی نام‌گذاری باید کرد است. نویسندگان اظهار داشت که در زمان بهترین زودتر سنگ می‌شود. شیر‌سوز و همکاران (1393) در فراوانی منطقه حفاظت‌نشده هنالیست دچار ماجراجویی که به دلیل ویژگی‌های مورفولوژیک و موجود و فیزیولوژیک و پرتو زار نیز تیره و راه‌کارهای دفاعی نظر در نظر گرفته و نیاز و کمک ترکیبات ناشی و نیز تیره به‌ختیاری را از جمله موش انجام شده است. است A. melanolepis (خواجه‌نژاد، 1389) سندی و مطافی‌زیانی، 1389) جهت این که با استفاده از کلون‌های کوه‌های A. melanolepis نسیم که در نمونه‌گیری غیرشکنک بوده است. این تفاوت عمده‌ای ناشی از اختلاف ارتفاع حداکثر 200 متری در ارتفاع بالاتر رویش‌اشته و A. melanolepis گونه‌ها همراه نیز در مقایسه منافع می‌باشد. عامل مؤثر دیگر درصد شب‌های می‌باشد که در شب‌های کمتر در مقایسه گسترش دارد. همچنین ارلاز جهات جغرافیایی، هرچند دانش کلی منطقه موردبررسی جنوب شرقی است، نیز تفاوت وجود دارد که روباه‌گونه A. melanolepis در جهات فرعی جنوبی و شرقی بیشتر گسترش داشته و در حالی که A. melanolepis در جهات فرعی جنوب غربی تا شمالی گسترش بیشتری دارد. به علاوه علت این
اختلاف می‌تواند ناشی از تفاوت پراامترهای خاک یا این تفاوت در اندازه این تحقیق از عوامل اکوئیلزیکی در انتشار گونه‌های موردطالعه در دست بررسی است تا تأثیر این عوامل به جهت ارائه شناخت بهتر از روشگاه‌های درون‌محیطی فوق‌العاده گردید.

اشکال روشی گونه‌ها و درصد حضور هریک از اشکال روشی می‌تواند به صورتی است که در یک منطقه نشاندهندگی اقلیم سرد و گوشه‌سازی در آن منطقه است. با توجه به اینکه اقلیم منطقه مطالعاتی نیز با استفاده از روش‌های مختلف به‌طور کلی، بدین‌طور که در شاخص‌هایی از سایر اشکال زیستی (63\% درصد) در این منطقه تحت تأثیر قلیمی است. این یافته‌ها مشابه نتایجی است که سنندجوی و مظفریان (131)، احمدالی و همکاران (131) و صادقی راد و همکاران (137) گزارش نموده‌اند. انسکه‌های و همکاران (138) درصد بالای حضور همی‌کریپتوئیدها را به‌دلیل سیری کردن سرما و جو گونه‌های تجربه‌ای در این گونه از گیاهان در سطح خاک و در منابع لاصرگیها و گوشه‌سازی زیستی‌های یکی کردن که با شاخص منطقه مطالعاتی همخوانی دارد. کامفسی (133) درصد گیاهان موجود در سایت‌های مطالعاتی را به‌خوبی اختصاص داده و قرارگیری این دسته از گیاهان متفاوت‌تر تعریف یا نشان دهنده‌ی آنها در حفاظت خاک تأکید نموده‌اند. همچنین حضور 10\% درصدی ترکیب‌ها به‌عنوان سایر شکل‌های منطقه به‌دلیل کشت درون خصوصی و قیمت‌های معنی‌دار است. امری که سود دیگر، فراوانی ترکیب‌ها گویای تغییرات مطلوب است که در منطقه حالت گرفته است. ترکیب‌ها به‌عنوان مکانیسم گریز از خشکی خود را قادر می‌سازند که در دوره‌های خشکی در غرب پااشند و یا ابتکار جرجه‌زدگی خود را در شرایط مناسب ارائه داده و کمک به تغییر کندن (فرمان‌نژاد، 138) با افزایش ارتفاع در منطقه، زیستی‌های متشکل‌تر مشاهده می‌شود. در کل سهم این شکل زیستی در فلور منطقه 6 درصد است. درصد مؤثر این اشکال زیستی ریخت گیاهان بین‌گرا زیستی گیاهان در منطقه آن‌ها نسبت به شرایط متغیر و خاکی منطقه می‌باشد.

با توجه به اینکه بیشتر گیاهان منطقه (46\% درصد) مربوط به عنصر روشی ایران- 1
تورونی هستند، می‌توان این منطقه را متعلق به ناحیه ایران- تورونی دانست. نتایج مطالعات ظلمی مطعم و همکاران (130) و احمدالی و همکاران (139) نیز این نتیجه را تأیید می‌کند. درصد

15
نشان دهنده حفاظت زیست یوپ گیاهان/ دوره ششم، شماره سیزدهم، پاییز و زمستان ۱۳۹۷

قابل توجهی از گونه‌های منطقه علاوه بر ناحیه ایران- تورانی در نواحی اروپا- سبزی و مدیترانهای نیز برای پژوهش دانشگاه چهارمدهی شناسانه دویی منطقه موردنظر از گونه‌های نواحی اروپا- سبزی و مدیترانهای است. به منظور بررسی نمودن گونه‌های در منطقه، با توجه به اینکه در مجموع ۶۸ گونه متعلق به ۶۱ جنس در سایه‌های موردنظر پراکنش داشته‌اند، نسبت گونه به جنس منطقه مطالعاتی مداوم ۳۴/۹ به دست‌آمد. این نسبت برای چندان اسفاهان (بوسفور و همکاران)، ۱۳۹۰ و هزنده که نسبت گونه به جنس در کلیه مناطق مقاشه شده، با وجود تفاوت در وسعت منطقه گزارش شده به یکدیگر نزدیک است. پایین‌ترین این نسبت در منطقه مطالعاتی مؤید است که تنویع گونه‌های در زمان بسیار طولانی پیداگر شده است.

در ازبیایی و مقاشه نتایج به‌دست‌آمده در رابطه با شاخص‌های تنویع گونه‌های، شاخص تنویع سیمپسون در سایه‌های مطالعاتی اختلاف معنی‌داری را نشان داد. دامنه تغییرات این شاخص سفر (الگوی پایین) و یک (الگوی بالا) می‌باشد. با توجه به نتایج به‌دست‌آمده، تنویع متوسط و روان به بالایی را در تمام سایه‌های مطالعاتی در گونه شاهد هستیم. میزان عدید شاخص شانویس (۴۵۰) در این مقدار اعلی به‌دست‌آمده در سایه‌ها، حاوکر میزان این شاخص در طبقات این اتفاقی می‌باشد و مداوم ۳۱/۳ به دست‌آمد. این نتیجه به این موضوع که در ارتفاعات بالاتر، با توجه به زیبایی و شدت پیشین‌البته، عمیق کاخ در مقایسه با ارتفاعات سیلیکی کمتر می‌باشد و در سایه‌های موردنظر با ارتفاع کمتر نیز، هرچند دارای پیشین‌البته کمتر و دامنه نسبتاً منظم می‌باشد، خاک منطقه رویش گیاهان شرایط ملایم را ندارند و در این نتیجه به‌دست‌آمده در سایه‌های A. aucheri تعلق دارد. این نتیجه به اختلاف معنی‌دار به‌دست‌آمده، می‌توان چنین بیان کرد که در سایه‌های مطالعاتی عامل ارتفاع بر گونه‌ای شاخص به‌دست‌آمده مؤثر می‌باشد. این نتیجه مشابه نتایج تحقیقات جاولا و همکاران (۲۰۰۸)، چاوا و همکاران (۱۳۹۰)، و میرهدلی و جعفری (۱۳۹۳) می‌باشد. نتایج حسین از مقایسه شاخص‌ها در طبقات شیب سایه‌های موردنظر، اختلاف معنی‌داری را نشان داد. شاخص یکپارچه توجه پراکنش و توزیع جهت گونه‌ها را نشان می‌دهد. شاخص یکپارچه سیمپسون در بین سایه‌های مشابه بوده است. شاخص یکپارچه باکتریا A. aucheri اسپرمولون در رویشگاه از دهان A. aucheri با کمترین ارتفاع (۱۳۸۱ متر) درای اختلاف معنی‌داری نسبت به سایر سایه‌ها بوده و بیشترین میزان را با مقدار عدیدی ۵۴/۵ به خود اختصاص داده است.
نتایج مقایسه میانگین شاخص‌های مورد مطالعه در جهات جغرافیایی، اختلاف معنی‌داری را در مورد شاخص تنوع شونن-واینر و شاخص یکنواختی اسپمیت-ویلسون نشان داد. رویشگاه A. aucheri جهت شمایل، بیشترین مقادیر شاخص یکنواختی اسپمیت-ویلسون و کمترین مقادیر شاخص تنوع شانون-واینر را به خود اختصاص داده است که سایر بیشترین گفت‌خصوصیات خاک این منطقه منجر به بروز چنین نتیجه‌ای شده است. مشابهت و عدم وجود اختلاف معنی‌دار بین رویشگاه A. aucheri و A. melanolepis را می‌توان ناشی از تأثیر عامل ارتفاع دانست.

در مجموع، نتایج نشان داد با توجه به غلبه گونه‌های تیره Asteraceae و سابر گونه‌های مهاجم و بعیدتر، ترکیب نامطلوب گونه‌های و همچنین تنوع گونه‌های باهنر در اکثر سایت‌های مورد مطالعه رویشگاه هر دو گونه در معرض تهدید و تخریب قرار دارند و ضرورت دارد اداره منابع طبیعی مدرک این روش در راستای حفاظت از ویژگی‌های طبیعی گونه‌های A. aucheri و A. melanolepis ایجاد شود.

سباسگزاري

نگارندهان از اقای فرهاد آقاجانلو به‌پرس زحماتی که در امر شناسایی گونه‌های گیاهی می‌پذیرد، صمیمانه سپاسگزاری می‌کنند.

منابع

آتشگاهی، ز. اجتماعی، ج، زراعت، ج. ۱۳۸۸. معرفی فلو، شکل زیستی و پراکنش جغرافیایی گیاهان در جنگل‌های شرق دودکانه ساری. استان مازندران، زیست‌شناسی ایران، ۲۱: ۱۹۲-۲۰۰۳.

احمدی، وا. و قربانی، ا.، همیار، ف.، اصفهانی، ع.، تیمورزاده، ع.، بدرزاده، م. ۱۳۹۴. بررسی فلو، شکل زیستی، گروه‌پر و تغییر تنوع و یکنواختی گونه‌های تحت تأثیر اقلیمی مختلف جوی فلاتی از کانونهای بحرانی در دامنه‌های جنوب شرقی سیستان، ذکار، دانشگاه خوی، دانشگاه بین‌المللی بلوط، ۳: ۴۲-۶۹.
تشریح حفاظت زیست‌بوم گیاهان، دوره شهر، شهره سیزدهم، پاییز و زمستان 1397

اجتهدادی، ج، سهیری، ع، عکافی، ج، رضوی، پ. 1388 روش‌های ایجاد گیری تنوع زیستی دانشگاه فردوسی مشهد، 132 صفحه.

اسدی، م، مصعوی، ع، خانم، م، مظفریان، و. (وریزمانی، 1392، فلوریپان، انتشارات مؤسسه تحقیقات جنگل‌ها و مریاح شماره 1 40 صفحه امیدرده اردلی، ا، زارع چاه‌آبی، م، ارژنی، ج، خرگیی‌پور، ج. 1396 ارزیابی اثر جهت دامنه و شدت چرا بر اثر اثر تنوع گونه‌ها با استفاده از پلات گند می‌باشد 6 در زیست‌بوم‌های مرتع کرنسی شهر کرد، حفاظت زیست‌بوم گیاهان، 1 (3): 13-21.

امیدی، ع، قربانی، ل، نیمورزاده، ع، هاشمی مجد، ک. 1396 بررسی عوامل محیطی مؤثر در پراکنش گونه‌ای Artemisia austriaca در دامنه‌های جنوب شرقی سیلان، گیاه و زیست‌بوم، 41: 21-37.

جبهی، م، ستاری‌نژاد، ع، قربانی نهوجی، م، غلامی‌پور، ج. 1396 معرفی انواع، شکل زیستی و پراکنش جغرافیایی گیاهان در زیست‌بوم‌های پارک ملی پاینده، استان مازندران، حفاظت زیست‌بوم گیاهان، خواهد می‌باشد.

حسین اشترافی، ح، منچی، ا، زاهدی‌امیری، ق، بابایی کافکی، س. 1394 بررسی فلورپیستیک، شکل زیستی و پراکنش جغرافیایی گیاهان در جنگل‌های بلوط شمال ایران (مطالعه موردی: جنگل‌های بلوط رسام) خدمات و فنون متعاب طبیعی 18 (1): 21-37.

خانپور امینی‌نیا، ن، زارع‌آبادی، ح، قانی، ف. 1387 ارزیابی پارامترهای اکولوژیکی کیفی و کمی گیاهان جانب پاهای جنگل‌های ایرانی (استان اصفهان)، گیاه و زیست‌بوم، 14: 21-37.

خواجه‌الدین، ج، یکانی، ح. 1389 فلوز منطقه شکار ممنوع حنا، تاکسونومی و بیوسیستمیک، 2 (1): 33-96.

دولتخواهی، م، عمری، ی، دولتخواهی، ع. 1390 بررسی فلورپیستیک منطقه حفاظت‌شده ارزه‌پریان در استان قزوین، تاکسونومی و بیوسیستمیک، 9: 24-31.

زارع حسنه‌زاده‌آبادی، ب، قربانی، ی، عظیمی‌پور، ف، هاشمی مجد، ک، اسمعیلی، ع. 1396 عوامل بوم‌شناسی در دامنه‌های جنوب شرقی سیلان، مرتع، مؤثر بر پراکنش گونه‌ای Artemisia fragrans Willd.

سرخوری، ف، اتجهدادی، ج، وعکفی، ج، معماییان‌ی، ف، جوهرچی، م، رجبی، ز. 1396 فلور، شکل زیستی و پراکنش جغرافیایی گیاهان منطقه حفاظت‌شده هلالی در استان خراسان رضوی تاکسونومی و بیوسیستمیک، 16 (5): 85-100.

سندجویی، و، مظفریان و. 1389 بررسی فلور منطقه سارال استان کردستان، تاکسونومی و بیوسیستمیک، 2 (3): 84-59.

18
شیرین نیازک، ج، جلیلی، غ، قاسمی، ش، نیکزاد، ع، عظیمی، م، ۱۳۹۱. بررسی فلوئورستیک شکل زیستی و پراکنش جغرافیایی گیاهان اراضی ماندابی (wetland) استان جنوبی شمال و شرقی سیستان و نساجی، تأسیسات و پویایی، ب، ۱۰ (۴)؛ ۴۱-۵۲.

شیرمردی، ج، حیدری، ق، غلامی، پ، مظفریان، و، طهماسبی، ب، ۱۳۹۲. مطالعه فلوئور مرانع منطقه قیمری کوه‌های جنگلی و بختیاری، تاسیسات و پویایی، ب، ۱۸ (۶)؛ ۸۷-۸۸.

شیرمردی، ج، مظفریان، و، غلامی، پ، حیدری، ق، صفا، م، ۱۳۹۳. معرفی فلوئور، شکل زیستی و انتشار جغرافیایی عصاره گیاهی منطقه حفاظتشده هن در استان چهاردانگه و بختیاری، زیست‌شناسی گیاهی، ۲۰ (۳)؛ ۹۶-۹۷.

صباری، ع، حسن‌آبادی، ز، میرتاجی‌دلی‌یی، م، ناطری، و، ۱۳۹۱. مطالعه فلوئور منطقه ریسه و پاقله شهروند شهر بابک استان کرمان، تاسیسات و پویایی، ب، ۱۲ (۴)؛ ۷۸-۷۹.

صداقی‌راد، ا، نصراللهی، م، آذری‌خان، ج، طویلی، غ، ۱۳۹۳. بررسی فلوئور، شکل زیستی و کورولوژی حوزه آبخیز سیمانی استان کرمانشاه، حفاظت زیستی و گیاهان، ۲ (۴)؛ ۱۷-۲۷.

نظریه مطروح، ف، طالبی، ر، آسیب‌زده، ف، هشتری، م، ۱۳۹۰. معرفی فلوئور، اشکال زیستی و پراکنش جغرافیایی گونه‌های گیاهی منطقه جنگلی و حفاظت‌شدگی مناطق دفاعی (استان اردبیل)، تأسیسات و پویایی، ۹ (۳)؛ ۸۸-۸۹.

فیخی‌نیا، ا، مصداقی، م، غلامی، پ، نادری، نیک‌آبادی، ح، ۱۳۹۰. اثر برخی از خصوصیات نوبگرفی بر نوع گیاهی (مطالعه موردی: مرانع استان بوشهر)، تحقیقات مرانع و بیابان ایران، ۳، ۱۳۹۰-۱۹۶۹.

قاشقانی، ا، احمدبادی، س، بیاسی‌پور، ج، ۱۳۹۱. وزن‌گذاری اکولوژی‌گیاه دارویی در زیست‌وحیان مرتعی حوزه آبخیز زبیلاجای آذربایجانشرقی، حفاظت زیستی و گیاهان، ۱۱ (۴)؛ ۸۶-۸۷.

قاشقانی، ا، شرین نیازک، ج، کاوه‌پور، ا، ملک‌بور، ب، میرزاپور، آق‌قشلاقی، ف، ۱۳۹۲. بررسی خصوصیات اکولوژی‌گیاهی گونه L Festuca ovina Willd در مرانع جنوب شرقی سیستان، تحقیقات مرتع و بیابان ایران، ۲۰ (۴)؛ ۸۳-۹۶.

قاشقانی، ا، عباسی خالکی، م، اصغری، غ، امیدی‌یی، غ، زارع‌حصری، ب، ۱۳۹۴. مقایسه برخی عوامل پوسیدگی در استان گونه‌های Artemisia austriaca و Artemisia fragrans Wild، ۱۳۹۴.

قاشقانی، ا، امیری، غ، مالکی‌پور، ب، ۱۳۸۹. مطالعه نوب گیاهی بارک ملی کیاسر استان دزفول، محیطزیست، ۴۹ (۳)؛ ۴۱-۵۱.

قهرانی، ا، ۱۳۷۴. کورموفیت‌های ایران، انتشارات مؤسسه تحقیقات جنگلی و مرانع ایران، تهران.

نشانده حفاظت زیست بوم گیاهان/ دوره ششم، شهره سپزدیم، پاییز و زمستان 1347